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Abstract

In this paper we study the macroeconomic effects of introducing a retail central
bank digital currency (CBDC). Using a two agent framework and endowment
economy with banked and unbanked households, we show CBDCs address
financial inclusion of the unbanked by providing a savings vehicle to allow
households to smooth consumption. Finally, we study the monetary policy
implications in a New Keynesian setting. Welfare gains under Ramsey optimal
monetary policy are higher for a retail CBDC with a primarily unbanked
population. When CBDC and deposits are near substitutes, optimal policy
requires the CBDC rate to track policy rates. Taken together, our findings
suggest a stronger use case for CBDCs in emerging economies with a lower
degree of financial inclusion.
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1 Introduction

Central bank digital currencies (CBDC) are digital tokens, similar to a cryptocur-

rency, issued by a central bank. Central banks are actively studying the potential

adoption of CBDCs, and notable examples include Sweden’s E-Krona and China’s

Digital Currency Electronic Payment. In this emerging literature there is a focus

on the macroeconomic effects (Kumhof et al. 2021; Benigno, Schilling, and Uhlig

2022; Ferrari Minesso, Mehl, and Stracca 2022), and implications for banking (Chiu

et al. 2019; Skeie 2019; Keister and Sanches 2021; Agur, Ari, and Dell’Ariccia 2022).

While CBDCs present obvious advantages – the increased financial inclusion of the

unbanked population, improving cross-border payments, and facilitating fiscal trans-

fers – there are still many unresolved issues in their design. For example, do CBDCs

attenuate or amplify monetary policy transmission channels? Is the interest rate on

the CBDC adjustable or fixed? Are there implications for redistribution through

taxes and subsidies on CBDC? Is there a distinction between retail CBDCs which

are distributed directly to households by the central bank or indirectly through the

commercial banks?

In answering these questions, our paper focuses on CBDC design and in par-

ticular the financial inclusion effects of introducing a digital currency. The paper

is divided into two parts. First, we review the arguments for and against a retail

CBDC using a simple endowment economy with two types of agents. We then ex-

tend the model to examine the macroeconomic effects of issuing a digital currency

when there is a banking sector and production, and a central bank that pursues

output- and inflation-stabilising monetary policy. This framework allows us to eval-

uate monetary policy rules in a New Keynesian setup and determine the magnitude

of monetary policy transmission for each CBDC design.

In the first part, we start with a simple two agent endowment economy with

a representative banked household (BHH) and unbanked household (UHH). The

unbanked use money while the banked have access to deposits.1 We introduce a

digital currency that can be used by the UHH as an alternative to cash. The central

bank can pay an interest rate on this retail CBDC. The primary benefit of this

digital currency is that it is a more effective savings vehicle as it relaxes the cash-in-

advance (CIA) constraint of the UHH. Welfare for both sets of households improve

with a retail CBDC.

In the next part of the paper, we then extend the model to include production

1. The BHH and UHH can be thought of as Ricardian and non-Ricardian households, respec-
tively, as is typical in the two-agent New Keynesian literature. See, for example, Debortoli and
Gaĺı (2017).
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and endogenous labour supply, monopolistic pricing of firms, a financial intermedi-

ary that lends to firms that use capital in production, and monetary policy set by

a central bank. This setup allows us to evaluate optimal monetary policy rules and

the role financial intermediaries play in the transmission effects of a retail CBDC.

We conduct three tests using this model. First, we simulate the economy with

respect to productivity shocks, cost-push inflationary shocks, and monetary pol-

icy shocks. Using these simulated responses, we address the question on whether a

CBDC attenuates or amplifies the transmission of monetary policy. Our results sug-

gest that monetary policy transmission is stronger upon introducing a retail CBDC,

and amplifies the economy with respect to fundamental shocks to productivity. The

intuition is straightforward: monetary policy has an additional lever in a CBDC

economy as the central bank sets the rate on digital currency deposits, which tracks

the policy rate in our specification. The UHH is therefore more sensitive to changes

in the policy rate. This translates to more sensitive changes of bank net worth

and leverage to monetary policy, amplifying the response of capital and produc-

tion through bank balance sheets via a financial accelerator mechanism (Bernanke,

Gertler, and Gilchrist 1999; Kiyotaki and Moore 1997, 2019).

Second, we use our model to evaluate the welfare effects of the introduction of

the CBDC with respect to an economy with no digital currency. Similar to our

endowment economy, we show distributional effects on welfare, with gains of CBDC

adoption concentrated for the unbanked share of the population. In contrast, banked

households benefit less from the introduction of a CBDC due to digital currency

being an imperfect substitute for commercial bank deposits. A welfare analysis

shows that the greatest use case for retail CBDCs therefore lies in an economy

with low levels of financial inclusion. Third, we then evaluate optimal monetary

policy to maximise welfare of households. The policy instruments include both the

central bank rate on household deposits and the digital currency deposits rate. By

conducting optimal monetary policy with two instruments, we can test alternative

regimes for the CBDC monetary policy implementation. For example, should the

CBDC rate be adjustable or fixed? The optimal policy results show that when

CBDC deposits are a near substitute to regular deposits, it is optimal for the CBDC

rate to track movements in the deposit rate. Welfare results show that a fixed rate

in fact leads to net welfare losses in aggregate relative to the economy with no digital

currency.

A final research question we answer is on elements of CBDC design and macro-

prudential policy. A first element draws on the distributive implications of intro-

ducing taxes on household digital currency deposits. A tax-neutral policy raises
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revenue from banked households and subsidises unbanked households. We show

that these transfers increase aggregate welfare. The intuition is straightforward:

the marginal welfare gains of subsidising CBDC deposits for the UHH exceeds the

marginal welfare cost of taxing CBDC deposits for the BHH. A second element we

test is the distributive implications of setting the CBDC rate above or below the

policy rate. Consistent with our Ramsey optimal policy findings, the optimal rate

setting for CBDC is the deposit rate. However, setting a CBDC rate at a constant

spread above (below) the policy rate leads to net gains (losses) for the UHH, and net

losses (gains) for the BHH. These distributional implications are apparent in the use

case of CBDC for each type of household. While a higher CBDC rate benefits the

unbanked, as they are offered a higher rate on savings, it can lead to negative effects

on the banked through increasing the cost of capital and reducing the price of eq-

uity. A third element we test is whether the financial intermediaries should circulate

retail CBDC deposits – which we call an indirect retail design – or, alternatively,

be held at accounts with the central bank, which we call a direct retail design.2 We

find that across different settings of the CBDC rate, the direct retail design yields

higher aggregate welfare. To explain our result, we note that the bank prefers to

hold deposits relative to CBDC as CBDC incur adjustment costs. Therefore, BHH

yield higher welfare in an equilibrium where they hold deposits directly with the

central bank.

The remainder of the paper is structured as follows. In Section 1.1 we sum-

marise the contributions of our paper to related literature. In Section 2 we outline

the baseline endowment economy to clarify our intuition, and examine the welfare

implications of introducing a CBDC. In Section 3 we introduce a two-agent New

Keynesian (TANK) model with a banking sector. Using this model we examine

welfare implications of introducing the CBDCs, including optimal policy exercises

for when a social planner can set interest rates on both fiat and digital currencies.

Section 4 considers CBDC design and macroprudential policy. Section 5 concludes

the paper.

1.1 Related Literature

Our work relates to an emerging literature on the macroeconomic implications of

CBDCs: Fernández-Villaverde et al. (2021), Andolfatto (2021), Benigno, Schilling,

and Uhlig (2022), Chiu et al. (2019), Keister and Sanches (2021), Benigno (2019),

2. Some useful references are: https://voxeu.org/article/cbdc-architectures-financial-system-
and-central-bank-future and https://voxeu.org/article/central-bank-digital-currencies-drivers-ap
proaches-and-technologies.
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George, Xie, and Alba (2020), Skeie (2019), Ikeda (2020), Kumhof et al. (2021),

Cong and Mayer (2021), and Agur, Ari, and Dell’Ariccia (2022). The CBDC lit-

erature primarily focus on broad macroeconomic implications. For example, the

domestic effects are documented in Kumhof et al. (2021). Skeie (2019) studies an

equilibrium in which the cryptocurrency is susceptible to bank runs. The finan-

cial intermediation properties of CBDCs have been studied in Keister and Sanches

(2021), which determines conditions in which the private sector is dis-intermediated

with CBDC leading to welfare losses. Chiu et al. (2019) study the role of CBDCs

when banks have market power, and show the introduction of CBDCs can lead to

increased competition among banks, an increase in deposit rates and lending raising

welfare. In contraste to these papers, our study focuses on the benefits of CBDCs

in a two-agent framework. By studying households that do not have access to a

financial asset, we focus on the financial inclusion benefits of a retail CBDC.

On the open economy front, Benigno, Schilling, and Uhlig (2022) model a two

country framework in which a global stablecoin3 is traded freely between both coun-

tries. They determine an equilibrium result of synchronisation of interest rates

across the two countries in which users are indifferent between holding the global

cryptocurrency and the domestic currency. Ferrari Minesso, Mehl, and Stracca

(2022) setup a two country model with the CBDC issued by the home country.

They find productivity spillovers are amplified in the presence of a CBDC, and it

reduces the effectiveness of the foreign country’s monetary policy. Cong and Mayer

(2021) model the political economy of currency competition with countries choosing

between adopting a CBDC and a private cryptocurrency. They show that emerg-

ing market economies with weak fundamentals can derive net welfare benefits from

cryptocurrency adoption as an alternative to adopting a CBDC or the US Dollar.

The novelty of our framework in this literature is to include an additional set of

households (the unbanked) that do not have access to domestic banking channels.

Critically, the unbanked only have access to digital currency as a medium of ex-

change and savings vehicle. Within this literature we are the first paper to evaluate

the welfare benefits of the direct and indirect retail CBDC designs.4

The third part of the paper focuses on monetary policy transmission and interest

rate rules. Ikeda (2020) models a two-country economy in which goods are priced in

foreign currency. Domestic monetary policy transmission is weakened when prices

3. Such as Facebook’s previously proposed Libra/Diem.
4. The taxonomy of direct and indirect retail CBDC designs is introduced in Auer and Böhme

(2020). They provide many aspects of CBDC design, including architecture (whether it is a direct
or indirect claim on the central bank), whether it uses a distributed ledger technology (DLT),
account or token based or wholesale or retail. In this paper we focus solely on the architecture of
CBDCs.
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are denominated in a foreign currency. The channel of monetary policy transmission

in Ikeda (2020) is expenditure switching; in our paper we offer an alternative channel

through having digital currency deposits. Crucially, whether the system is retail or

indirect retail matters for monetary policy transmission to bank balance sheets.

2 Two-Agent Endowment Economy Model with

Central Bank Digital Currency

Below we introduce a simple two-agent endowment economy featuring CBDCs. The

model comprises two types of households: the banked and the unbanked, denoted

with j = h and j = u, respectively. The population is normalised to unity, with the

two types of households occupying the continuum [0, 1]. BHHs are proportion Γh of

the population. They have access to a one-period risk-free savings asset, Dt, which

pay a gross nominal rate of interest, Rt, and are in zero net supply. Conversely, the

unbanked, of proportion Γu = 1 − Γh, do not have access to the risk-free savings

asset.

However, our endowment economy features an additional asset, DCt, which rep-

resents a CBDC or digital currency, and it is accessible and traded by both types of

agents. In this simple setup, DCt is in zero net supply, and, importantly, holdings

of it earn a nominal return of RDC
t .

The infinite horizon problem for the representative BHH is:

Vh
t = max

{Ch
t+s,Dt+s,DCh

t+s}∞s=0

Et

∞∑
s=0

βsu(Ch
t+s),

subject to the period budget constraint (in real terms):

Ch
t +Dt +DCh

t + χDC
t = T h

t +
Rt−1Dt−1 +RDC

t−1DC
h
t−1

πt
,

where Cj
t , is consumption, T j

t are lump sum transfers, and πt is gross inflation,
5 and

DCj
t are digital currency balances held by households of type j. In our setup, χDC,j

t

represents a cost of converting digital currencies for excess borrowing and lending,

5. Gross inflation, πt, is defined as πt = Pt/Pt−1, where Pt is the price level.
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the extent of which is governed by cost parameter κDC :6

χDC,j
t =

κDC

2

(
DCj

t

)2
. (1)

The analogous problem for the representative UHH is:

Vu
t = max

{Cu
t+s,DCu

t+s}∞s=0

Et

∞∑
s=0

βsu(Cu
t+s),

subject to their budget constraint,

Cu
t +Mt +DCu

t + χDC,u
t + χM

t = T u
t +

Mt−1 +RDC
t−1DC

u
t−1

πt
,

and the cash-in-advance (CIA) constraint,

αMC
u
t ≤ Mt−1

πt
, (2)

where χM
t are money adjustment costs of the form:

χM
t =

ϕM

2
(Mt − M̄)2. (3)

The CIA constraint features parameter αM ∈ (0, 1) which implies that even with

digital currencies, the UHH must settle a certain fraction of their consumption

purchasing decisions via real money holdings.

We also define ωt as being an inequality measure, defined as:

ωt = 1− Cu
t

Ch
t

, (4)

with higher (lower) values of ωt showing an increase (decrease) in consumption

inequality between the BHH and UHH in period t.

We assume that there exists a monetary authority which oversees real money

balances. We assume the following law of motion for real money balances:

Mt =
Mt−1

πt
. (5)

Additionally, since DCt is in zero net supply, we have the following aggregate con-

6. We note that as κDC → 0, the digital currency DC becomes a perfect substitute for the risk-
free savings asset D; and so the quantities of digital currency are indeterminate in equilibrium.
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dition:

DCu
t = −Γh

Γu

DCh
t .

Finally, endowments are set exogenously and follow a stationary AR(1) process:

lnT i
t = ρT lnT i

t−1 + εTt ,

where εTt is an exogenous disturbance to both endowments with variance σ2
T .

For a full set of equilibrium conditions for the economy economy both with

and without CBDCs, please refer to Appendix A.1. We also show model impulse

response functions (IRFs) to orthogonal shocks in Appendix A.1.5. Additionally,

for a description of the parameterisation used in our analyses, please refer to Table

3 in Section 3.6.1.

2.1 Welfare Benefits of Financial Inclusion

To analyse the benefits of financial inclusion through the provision of CBDCs, we

compare the ergodic mean7 of welfare for the BHH, UHH, and a synthetic aggregate

household:8

Wj = F
(
Var(C̄j),Var(L̄j)

)
, j = {h, u}, (6a)

Wagg = ΓhWh + ΓuWu. (6b)

2.1.1 CBDC Autarky

Figure 1 plots the ratio of welfare of the representative BHH to the UHH as a function

of the variance of the endowment shock process in an economy with no CBDC. We

show that as the variance of the endowment shock increases, the relative welfare

of the banked increases. This supports our hypothesis of financial inclusion. As

banked households have a savings vehicle to smooth consumption, their relative

welfare increases when there are larger shocks to income. They are able to smooth

consumption through the intertemporal consumption Euler equation. On the other

hand, the unbanked can only smooth consumption through money holdings, and

are impaired in their ability to smooth idiosyncratic shocks due to the presence of

the CIA constraint. Based on our calibration, when the volatility of the endowment

7. To clarify, we take a second-order approximation about the deterministic steady state, subject
the economy to our specified shocks, and then simulate the model for 2,000 periods to obtain the
mean value of the variables of interest.

8. We adjust the population proportion of the representative BHH and UHH when constructing
aggregate variables.
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process is set to 1% (quarterly), the BHH sees an almost 30% welfare gain over the

UHH; when volatility is set to 10% (quarterly), the BHH sees an over 80% welfare

gain over the UHH.

Figure 1: Banked to unbanked relative welfare for a no-CBDC economy (% ch.)

1 2 3 4 5 6 7 8 9 10

<T, %

30

40

50

60

70

80

90
BHH/UHH

Note: Figure plots the ratio of the ergodic mean of welfare for the representative BHH and UHH,

for increasing variance in the endowment shock process. The proportion of banked and unbanked

households are set to a baseline value of Γh = Γu = 0.5.

2.1.2 CBDC Introduction

We highlight the importance of financial inclusion through the introduction of CBDC

to both the BHH and UHH. In Figure 2 we plot the relative welfare gains for each

representative household for the baseline endowment economy with CBDC over the

endowment economy without CBDC. Our analysis shows that the welfare gains for

the UHH are significant and scale with the idiosyncrasy of the endowment process.
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Figure 2: Relative welfare and endowment volatility (% ch.)
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Note: Figure plots the relative welfare gains of an economy with CBDC compared to an economy

without CBDC for the representative BHH, UHH, and aggregate household for increasing variance

in the endowment shock process. The proportion of banked and unbanked households are set to a

baseline value of Γh = Γu = 0.5.

The results for two specific values of σT are highlighted in Table 1. With an

endowment volatility of 1% (quarterly), the gains to BHH are 0.19%, and the gains

to UHH are 22.4%. When the endowment volatility increases to 10% (quarterly),

the relative welfare gain for the UHH in a CBDC-equipped economy over a no-

CBDC economy is approximately 60%. In contrast, the welfare gains for the BHH

are relatively low, primarily due to the fact that the BHH still have access to the

first-best risk-free savings asset, D. Aggregate welfare increases to 51.2% above the

economy with no CBDC.

Table 1: Relative welfare gains of a CBDC economy over a no-CBDC economy

BHH UHH Agg.

σT = 0.01 0.19% 22.4% 14.1%
σT = 0.1 8.2% 60.4% 51.2%

Our analysis so far has focused on changing the volatility of the endowment

shock, while keeping the shares of the banked and unbanked population fixed. In

Figure 3, we plot the relative welfare gains for each representative household for

the baseline endowment economy with CBDC over an endowment economy without

CBDC, against the share of the banked population. In line with our previous results,

aggregate welfare effects of the CBDC is decreasing in the share of BHH. When the

share of BHH is 1, there are no gains from financial inclusion, and the relative welfare
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gains of introducing a CBDC are zero. In contrast, the relative gains of the CBDC

economy approach 60% in aggregate when the share of BHH is 0.1. Taken together,

our findings suggest that the welfare benefits of CBDCs are higher in economies

with lower degrees of financial inclusion and a higher share of the unbanked.

Figure 3: Relative welfare and banked population (% ch.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Share of the Banked, !h

0

10

20

30

40

50

60

70

BHH
UHH
AGG

Note: Figure plots the relative welfare gains of an economy with CBDC compared to an econ-

omy without CBDC for the representative BHH, UHH, and aggregate household for increasing

proportion of the banked population while keeping σT = 0.1 fixed.

3 Two-Agent New Keynesian Model with Central

Bank Digital Currency

In this section, we extend the model presented in Section 2 in two ways: i) the

introduction of a banking sector accompanied with credit frictions; and ii) a supply

side of the economy with price stickiness and monopolistic competition (Christiano,

Eichenbaum, and Evans 2005; Smets and Wouters 2007; Gaĺı 2015) to build a two-

agent New Keynesian (TANK) model as in Bilbiie (2018), Bilbiie and Ragot (2021),

and Debortoli and Gaĺı (2017, 2022).

We adopt the setup of Gertler and Karadi (2011), introducing a third type of

agent – bankers – which allows us to maintain a representative setup of the household
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sector. In this setup, banked households hold claims on deposits – denominated in

both fiat currency and digital currency – which are held at banks, and they may

also directly invest in firms by purchasing equity holdings. Unbanked households

are still limited to money holdings and digital currencies; the latter of which are

also deposited into the banking sector. Banks then convert deposits into credit,

facilitating loans to firms who acquire capital for the means of production, as in

Gertler and Kiyotaki (2010, 2015).

3.1 Production

The supply side of the economy is simple. Final goods are produced by perfectly

competitive firms that use labor and capital to produce their output. They also

have access to bank loans, and conditional on being able to take out loan, they do

not face any financial frictions. These firms pay back the crediting banks in full

via profits. Meanwhile, capital goods are produced by perfectly competitive firms,

which are owned by the collective household.

3.1.1 Final Good Firms

There is a representative competitive final good producing firm which aggregates a

continuum of differentiated intermediate inputs according to a Dixit-Stiglitz aggre-

gator:

Yt =

(∫ 1

0

Yt(i)
ϵ−1
ϵ dj

) ϵ
ϵ−1

, ϵ > 0. (7)

So final good firms maximize their profits by selecting how much of each intermediate

good to purchase, and so their problem is:

max
Yt(i)

PtYt −
∫ 1

0

PtYt(i)dj.

Solving for the FOC for a typical intermediate good j is:

Yt(i) =

(
Pt(i)

Pt

)−ϵ

Yt. (8)

The relative demand for intermediate good j is dependent of j’s relative price with

ϵ, the price elasticity of demand, and is proportional to aggregate output, Yt.

From Blanchard and Kiyotaki (1987), we can derive a price index for the aggre-

gate economy:

PtYt ≡
∫ 1

0

Pt(i)Yt(i)dj.
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Then, plugging in the demand for good j from (8) we have:

Pt =

(∫ 1

0

Pt(i)
1−ϵdj

) 1
1−ϵ

.

3.1.2 Capital Good Firms

We assume that capital goods are produced by perfectly competitive firms, and that

the aggregate capital stock grows according to the following law of motion:

Kt = It + (1− δ)Kt−1, (9)

where It is investment and δ ∈ (0, 1) is the depreciation rate.

The objective of the capital good producing firm is to choose It to maximize

revenue, QtIt. Thus, the representative capital good producing firm’s objective

function is:

max
It

QtIt − It − Φ

(
It
Ī

)
It,

where Φ(·) are investment adjustment costs as in Christiano, Eichenbaum, and Evans

(2005), and are defined as:

Φ

(
It
Ī

)
=
κI
2

(
It
Ī
− 1

)2

,

with Φ(1) = Φ′(1) = 0 and Φ′′(·) > 0. The investment adjustment cost parameter,

κI = Φ′′(1) is chosen so that the price elasticity of investment is consistent with

instrumental variable estimates in Eberly (1997).

Differentiating the objective function with respect to It gives the FOC:

Qt = 1 + Φ

(
It
Ī

)
+

(
It
Ī

)
Φ′
(
It
Ī

)
. (10)

3.1.3 Intermediate Goods Producers

The continuum of intermediate good producers are normalized to have a mass of

unity. A typical intermediate firm i produces output according to a CRTS technology

in capital and labor with a common productivity shock:

Yt(i) = AtKt−1(i)
αLt(i)

1−α.
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The problem for the i-th firm is to minimize costs,

min
Kt−1(i),Lt(i)

zktKt−1(i) + wtLt(i),

subject to their production constraint:

AtKt−1(i)
αLt(i)

1−α ≥ Yt(i) =

(
Pt(i)

Pt

)−ϵ

Yt.

This yields the minimized unit cost of production:

MCt =
1

At

(
zkt
α

)α(
wt

1− α

)1−α

. (11)

The price-setting problem of firm i is set up à la Rotemberg (1982) where firm

i maximizes the net present value of profits,

Et

[
∞∑
s=0

Λh
t,t+s

{(
Pt+s(i)

Pt+s

(1− τ)−MCt+s

)
Yt+s(i)−

κ

2

(
Pt+s(i)

Pt−1+s(i)
− 1

)2

Yt+s

}]
,

by optimally choosing Pt(i), and where κ denotes a price adjustment cost parameter

for the firms.9 Differentiating the above expression with respect to Pt(i) yields the

following FOC:

κ

(
Pt(i)

Pt−1(i)
− 1

)
Yt

Pt−1(i)
=

1− τ

Pt

(
Pt(i)

Pt

)−ϵ

Yt

+ κEt

[
Λh

t,t+1

(
Pt+1(i)

Pt(i)
− 1

)
Pt+1(i)

Pt(i)2
Yt+1

]
− ϵ

(
Pt(i)

Pt

(1− τ)−MCt

)(
Pt(i)

Pt

)−ϵ−1
Yt
Pt

.

Evaluating at the symmetric equilibrium where intermediate firms optimally price

9. We calibrate κ to the following:

κ =
ϵθ

(1− θ)(1− βθ)
,

where θ is the probability of firm i being unable to optimally adjust its price in any given period
as in a model with Calvo (1983) pricing. For further details please refer to Appendix A.2.1.
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their output at Pt(i) = Pt,∀i, allows us to write:

πt(πt − 1) =
1

κ
[ϵMCt + 1− ϵ+ τϵ− τ ]

+ Et

[
Λh

t,t+1(πt+1 − 1)πt+1
Yt+1

Yt

]
+ ξπt ,

(12)

where ξπt is a cost-push shock that follows a stationary AR(1) process (in logarithms).

Also, under the symmetric equilibrium we can express output as:

Yt = AtK
α
t−1L

1−α
t , (13)

where it follows that:

Kt−1 =

∫ 1

0

Kt−1(i)di, Lt =

∫ 1

0

Lt(i)di.

As noted above, there is a distortion arising from monopolistic competition

among intermediate firms. We assume that there is a lump-sum subsidy to off-

set this distortion, τ . From Equation (12), we see that the policy maker chooses a

subsidy such that the markup over marginal cost is offset:10

τ = − 1

ϵ− 1

which guarantees a non-distorted steady-state. Hereinafter, we abstract from dis-

torted steady states and only consider the efficient steady state. Our choice to model

nominal rigidity following Rotemberg pricing should not alter our welfare analysis

in Section 3.6. As noted by Nisticò (2007) and Ascari and Rossi (2012), up to a

second order approximation and provided that the steady state is efficient, models

under both Calvo and Rotemberg pricing imply the same welfare costs of inflation.

Therefore, a welfare-maximizing social planner would prescribe the same optimal

policy across the two regimes.

3.2 Households and Workers

The representative household now contains a continuum of individuals, normalized

to 1, each of which are of type i ∈ {b, h, u}. The setup follows Murakami and

Viswanath-Natraj (2021). Bankers (i = b) and BHH workers share a perfect insur-

ance scheme, such that they each consume the same amount of real output. How-

ever, UHH workers are not part of this insurance scheme, and so their consumption

10. Note that this assumes that steady state inflation is net-zero, i.e., π̄ = 1.
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volumes are different from bankers and workers. Similar to before in Section 2, we

define Γh as the proportion of the BHH and bankers, and the UHH are of proportion

Γu = 1− Γh.

We endogenize labor supply decisions on the part of households, and so the BHH

maximize the present value discounted sum of utility:11

Vh
t = max

{Ch
t+s,L

h
t+s,Dt+s,Kh

t+s,DCh
t+s}∞s=0

Et

∞∑
s=0

βs ln

(
Ch

t+s − ζh0
(Lh

t+s)
1+ζ

1 + ζ

)
, (14)

subject to their period budget constraint:

Ch
t +Dt +QtK

h
t + χh

t +DCh
t + χDC,h

t + T h
t

= wtL
h
t +Πt + (zkt + (1− δ)Qt)K

h
t−1 +

Rt−1Dt−1 +RDC
t−1DC

h
t−1

πt
,

(15)

where wt are real wages, Lj
t , j ∈ {h, u}, is labor supply, ζ is the inverse-Frisch

elasticity of labor supply, ζj0 is a relative labor supply parameter, Kh
t are equity

holdings in firms by the BHH, χh
t are the costs of equity acquisitions incurred by

the BHH, T j
t are now lump-sum taxes, Qt is the price of equity/capital, and Πt are

distribution of profits due to the ownership of banks and firms. We also note that

Λh
t,p is the BHH stochastic discount factor (SDF):

Λh
t,p ≡ βp−tEt

(
λhp
λht

)
, (16)

where λht is the marginal utility of consumption for the BHH.

One distinction between the BHH and bankers purchasing equity in firms is the

assumption that the BHH pays an efficiency cost when it adjusts its equity holdings.

We assume the following functional form for χh
t :

χh
t =

κh

2

(
Kh

t

Kt

)2

ΓhKt. (17)

Meanwhile, the UHH maximizes the present discounted sum of per-period utili-

ties given by:

Vu
t = max

{Cu
t+s,L

u
t+s,Mt+s,DCu

t+s}∞s=0

Et

∞∑
s=0

βs ln

(
Cu

t − ζu0
(Lu

t )
1+ζ

1 + ζ

)
, (18)

11. We make use of Greenwood–Hercowitz–Huffman preferences for both the BHH and UHH
to eliminate the income effect on an agent’s labor supply decision. Additionally, it allows us to
develop a tractable analytical solution for the model steady state
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subject to its budget constraint,

Cu
t +Mt + χM

t +DCu
t + χDC,u

t + T u
t = wtL

u
t +

Mt−1 +RDC
t−1DC

u
t−1

πt
, (19)

and the CIA constraint, (2).

3.3 Bankers and the Finance Sector

Among the population of bankers, each j-th banker owns and operates her own bank.

The bankers are indexed on a continuum of measure one. A banker will facilitate

financial services between households and firms by providing loans to firms in the

form of equity, kbt , funded by domestic deposits, dt, and digital currencies deposits,

dct, and her own net worth, nt. However, financial frictions may limit the ability of

the banker to raise deposits from households.

To this end, each banker seeks to accumulate retained earnings to funds their

investments. To maintain model tractability, in each period, bankers have a fixed

probability of moving in and out of the financial sector. Let σb denote the probability

that a banker remains as a banker in the following period, with complementary

probability 1 − σb that she retires. This implies an expected franchise life of an

individual bank of 1
1−σb

. Furthermore, the number of bankers exiting the financial

market is matched by the number of new bankers entering.

New bankers start up their franchise with fraction γb of total assets of the banked

households. Upon retirement, a banker will exit with her net worth, bringing the

balance back to the household in the form of a dividend. Therefore, a banker will

seek to maximize her franchise value, Vb
t , which is the expected present discount

value of future dividends:

Vb
t = Et

[
∞∑
s=1

Λh
t,t+sσ

s−1
b (1− σb)nt+s

]
, (20)

where nt+s is the net worth of the bank when the banker retires at date t + s with

probability σs−1
b (1 − σb). Note that we make the simplifying assumption that each

individual banker exogenoubsly accepts digital currency deposits, dct, directly in

proportion to the population of bankers and total digital currency holdings. In

other words, in aggregate, the total sum of individual digital currency deposits at

each j-th bank, dct(j), is equal to aggregate digital currency deposits, DCt:∫ 1

0

dct(j) dj = DCt.
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Thus, a banker will choose quantities kbt and dt to maximize expression (20). We

assume that managing the sources of funding is costly in terms of resources, and so

the banker pays the following the management cost:

χb
t =

κb

2
x2tQtk

b
t , (21)

where we define κb > 0 is a parameter and xt is a banker’s digital currency deposit

leverage ratio:

xt =
dct
Qtkbt

. (22)

A financial friction in line with Gertler and Kiyotaki (2010) is used to limit the

banker’s ability to raise funds, whereby the banker faces a moral hazard problem:

the banker can either abscond with the funds she has raised from depositors, or

the banker can operate honestly and pay out her obligations. Absconding is costly,

however, and so the banker can only divert a fraction θb > 0 of assets she has

accumulated.

The caveat to absconding, in addition to only being able to take a fraction of

assets away, is that it takes time – i.e. it take a full period for the banker to abscond.

Thus, the banker must decide to abscond in period t, in addition to announcing what

value of dt she will choose, prior to realizing next period’s rental rate of capital. If a

banker chooses to abscond in period t, its creditors will force the bank to shutdown

in period t+ 1, causing the banker’s franchise value to become zero.

Therefore, the banker will choose to abscond in period t if and only if the return

to absconding is greater than the franchise value of the bank at the end of period t,

Vb
t . It is assumed that the depositors act rationally, and that no rational depositor

will supply funds to the bank if she clearly has an incentive to abscond. In other

words, the bankers face the following incentive constraint:

Vb
t ≥ θbQtk

b
t , (23)

where we assume that the banker will not abscond in the case of the constraint

holding with equality.

3.3.1 Bank Balance Sheet

Table 2 represents the balance sheet of a typical banker, and so we can write the

following balance sheet constraint that the banker faces:

Qtk
b
t + χb

t = dt + dct + nt. (24)
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Table 2: Bank balance sheet

Assets Liabilities + Equity
Loans Qtk

b
t Deposits dt

Management costs χb
t Digital currency deposits dct

Net worth nt

Additionally, we can write the flow of funds constraint for a banker as

nt = [zkt + (1− δ)Qt]k
b
t−1 −

Rt−1

πt
dt−1 −

RDC
t−1

πt
dct−1, (25)

noting that for the case of a new banker, the net worth is the startup fund given by

the household:

nt = γb[z
k
t + (1− δ)Qt]kt−1.

3.3.2 Rewriting the Banker’s Problem

With the constraints of the banker established, we can proceed to write the banker’s

problem as:

max
kt,dt

Vb
t = Et

[
Λh

t,t+1

{
(1− σb)nt+1 + σbVb

t+1

}]
,

subject to the incentive constraint (23) and the balance sheet constraint (24).

Since Vb
t is the franchise value of the bank, which we can interpret as a “market

value”, we can divide Vb
t by the bank’s net worth to obtain a Tobin’s Q ratio for the

bank denoted by ψt:

ψt ≡
Vb

t

nt

= Et

[
Λh

t,t+1(1− σb + σbψt+1)
nt+1

nt

]
. (26)

We define ϕt as the maximum feasible asset to net worth ratio, or, rather, the

leverage ratio of a bank:

ϕt =
Qtk

b
t

nt

. (27)

Additionally, if we define Ωt,t+1 as the stochastic discount factor of the banker, µt as

the excess return on capital over fiat currency deposits, µDC
t as the cost advantage

of digital currency deposits over fiat currency deposits, and υt as the marginal cost

of deposits, we can write the banker’s problem as the following:

ψt = max
ϕt

{
µtϕt + µDC

t xtϕt +

(
1− κb

2
x2tϕt

)
υt

}
,
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subject to

ψt ≥ θbϕt.

Solving this problem yields:

ψt = θbϕt, (28)

ϕt =
υt

θb − µt − µDC
t xt +

κb

2
x2tυt

, (29)

where:

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

}]
, (30)

µDC
t = Et

[
Ωt,t+1

{
Rt

πt+1

− RDC
t

πt+1

}]
, (31)

υt = Et

[
Ωt,t+1

Rt

πt+1

]
, (32)

Ωt,t+1 = Λh
t,t+1(1− σb + σbψt+1). (33)

For the complete solution of the banker, please refer to Appendix A.2.3 and A.2.4.

3.4 Fiscal and Monetary Policy

We assume that the government operates a simple fiscal rule to cover the producer

subsidy addressing the distortions arising from monopolistic competition:

− τYt = ΓhT
h
t + ΓuT

u
t . (34)

Meanwhile, the central bank is assumed to operate an inertial Taylor Rule for the

nominal interest rate:

Rt

R̄
=

(
Rt−1

R̄

)ρR (
πϕπ
t XϕY

t

)1−ρR
exp(εRt ) (35)

where it reacts to inflation and the welfare relevant output gap, Xt, which we define

as:

Xt =
Yt

Y f
t

,

where Y f
t is the flexible price level of output corresponding to when κ = 0, and

where εRt is an exogenous and transitory monetary policy shock.

Additionally, we assume that the central bank sets the nominal return on digital
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currency one-for-one in line with the nominal interest rate on deposits:

RDC
t = Rt. (36)

We explore the implications of alternative rules on model dynamics and welfare in

Sections 3.6 and 3.7.

3.5 Market Equilibrium

Aggregate consumption, labor supply, and digital currency holdings by the BHH

and UHH are given as:

Ct = ΓhC
h
t + ΓuC

u
t , (37)

Lt = ΓhL
h
t + ΓuL

u
t , (38)

DCt = ΓhDC
h
t + ΓuDC

u
t . (39)

The aggregate resource constraint of the economy is:

Yt = Ct +

[
1 + Φ

(
It
Ī

)]
It +

κ

2
(πt − 1)2Yt

+ Γh(χ
h
t + χb

t + χDC,h
t ) + Γu(χ

M
t + χDC,u

t ),

(40)

with aggregate capital being given by:

Kt = Γh(K
h
t +Kb

t ). (41)

Aggregate net worth of the bank is given by:

Nt = σb

[
(zkt + (1− δ)Qt)K

b
t−1 −

Rt−1

πt
Dt−1 −

RDC
t−1

πt

DCt−1

Γh

]
+ γb(z

k
t + (1− δ)Qt)

Kt−1

Γh

,

(42)

and the aggregate balance sheet of the bank is given by the following equations:

QtK
b
t = ϕtNt, (43)(

1 +
κb

2
x2t

)
QtK

b
t = Dt +

DCt

Γh

+Nt, (44)

xt =
DCt

QtΓhKb
t

. (45)
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Finally, the stationary AR(1) processes for TFP and cost-push shocks (in logs)

are given by:

At = ρAAt−1 + εAt , (46)

ξπt = ρπξ
π
t−1 + επt , (47)

A competitive equilibrium is a set of seven prices, { MCt, Rt, R
DC
t , πt, Qt, wt,

zkt }, 19 quantity variables, { Ct, C
h
t , C

u
t , Dt, DCt, DC

h
t , DC

u
t , It, Kt, K

b
t , K

h
t , Lt,

Lh
t , L

u
t , Mt, Nt, T

h
t , T

u
t , Yt } , six bank variables, { xt, ψt, ϕt, µt, µ

DC
t , υt }, and two

exogenous variables, { At, ξ
π
t }. For a complete list of the equilibrium equations

please refer to Appendix A.2.5.

3.6 Model Dynamics and Welfare Comparisons

3.6.1 Parameterisation and Steady State Values

Table 3: Parameter values

Parameter Value Description

θ 0.399 Elasticity of leverage wrt foreign borrowing

σ 0.940 Survival probability

γb 0.005 Fraction of total assets inherited by new banks

κb 0.022 Management cost for DC

β 0.990 Discount rate

ζ 0.333 Inverse-Frisch elasticity

ζh0 3.050 Labour supply capacity

κh 0.020 Cost parameter of direct finance

Γh 0.500 Proportion of BHH

γ 0.500 CIA weight on money

ϕM 0.010 Money adjustment cost parameter

κDC 0.0005 Digital currency adjustment cost parameter

α 0.333 Capital share of output

δ 0.025 Depreciation rate

ϵ 9.000 Elasticity of demand

κI 0.667 Investment adjustment cost

θ 0.750 Calvo parameter

τ -0.125 Producer subsidy

M 1.125 Markup
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Table 3 – Continued

Parameter Value Description

ϕπ 1.500 Taylor rule inflation coefficient

ϕY 0.100 Taylor rule output coefficient

ρA 0.850 AR(1) coefficient for TFP shock

ρπ 0.850 AR(1) coefficient for cost-push shock

ρR 0.550 Taylor rule persistence

Figure 4 presents results in response to a 1% annualised monetary policy shock.

We assume a standard Taylor rule and allow the CBDC rate to track the deposit

rate. Monetary policy is amplified when the CBDC is introduced. We see strong

pass-through of policy rates to UHH consumption when they have access to CBDCs.

The UHH response is quantitatively significant and translates to stronger transmis-

sion to aggregate consumption and the output gap. Turning to the bank balance

sheet, we find neutral effects, where a contractionary shock induces the UHH to hold

more CBDC, and the deposit base to shrink as the bank’s funding costs increase.

Therefore net worth of the bank and capital are quantitatively similar to the no

CBDC regime. In summary, monetary policy transmission to aggregate consump-

tion, output, and pass-through to inflation is strengthened with the introduction of

the CBDC. For an analysis of fundamental-based shocks such as TFP and cost-push

shocks refer to Appendix A.2.7.

Figure 5 evaluates welfare of introducing a CBDC with respect to TFP, cost-

push, and monetary shocks. We find the UHH have lower levels of financial inclusion

and have a stronger incentive to adopt a retail CBDC. As the CBDC offers a rate of

remuneration, it is an effective savings vehicle for the unbanked and enables them to

achieve welfare gains through consumption smoothing. The BHH achieves smaller

net welfare benefits with a retail CBDC. There are two reasons for this. First, the

BHH face some distortionary costs of holding a CBDC relative to bank deposits,

and therefore do not gain directly from access to a CBDC as they already have an

efficient savings vehicle. However, when the UHH hold CBDC, this scales the bank

balance sheet, increasing net worth and bank equity. This explains why BHH have

higher welfare relative to the economy with no CBDC when the banked population

share is low. Turning to aggregate welfare, we observe net welfare benefits relative

to the no-CBDC regime when Γh is very low, so the economy is primarily unbanked.

This corresponds to the case when the gains from financial inclusion are strongest.
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Figure 4: IRFs to a 1% ann. monetary policy shock
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Note: Figure plots impulse responses of model variables with respect to a 1% annualized innovation to the Nominal Interest Rate. Time periods are

measured in quarters, and responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R) and Digital

Currency Returns (RDC) which are expressed as annualized net rates.
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Figure 5: Welfare comparison (% change over no-CBDC regime)
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Note: Figure plots welfare for BHH, UHH and aggregate households as a function for the share of

the banked population, Γh. The welfare is calculated as a per cent change from the regime with

no digital currency.

3.7 Optimal Policy

We now explore the implications for optimal policy, assuming that a policy maker

has access to two instruments in order to maximise welfare: nominal interest rates

on deposits, R, and nominal interest rates on digital currency, RDC . More formally,

let us state the problem for the welfare maximising policy maker as:

max
{Rt+s,RDC

t+s}∞s=0

Vt = ΓhVh
t + ΓuVu

t , (48)

subject to the entire set of structural equations as set out in Sections 3.1-3.5.

The purpose of this section is to investigate whether a policy that implies zero

spread between the rates is optimal. We argue that RDC is different to R in two

distinct ways. First, digital currencies are – by construction – a sub-optimal savings

instruments compared to deposits due to the presence of convex adjustment cost.

The size and calibration of these adjustment costs have a significant impact on

welfare outcomes.12 Secondly, and as previously mentioned, we assume bankers

cannot optimally select the quantity of digital currency deposits. Thus, RDC can be

used to induce a socially optimal level of digital currency to equity ratio, x, on the

banker’s balance sheet.

As CBDC and deposits are imperfect substitutes, the instruments available to

the policy maker are not collinear, allowing us to conduct the optimal policy exercise.
13 The presence of Γu proportion of households that are unbanked in the economy,

12. We show these impacts and conduct a robustness check in Appendix A.2.8.
13. If bankers had been able to privately optimise x, and if digital currency deposits were a perfect
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and which are are subject to a CIA constraint, leads the policy maker to set a

steady-state rate of inflation that is deflationary – a result well covered in, for

example, Chari, Christiano, and Kehoe (1991) and Schmitt-Grohé and Uribe (2010).

Deflation is, however, costly through inefficient price adjustments; thus the policy

maker induces a relatively low level of deflation (0.66% annualised). As Γu → 0, the

model converges to a standard representative agent setup and the optimal inflation

level converges to zero, π̄ → 1.

Figure 6 shows the decomposition of welfare gains associated with both the

introduction of the CBDC and optimal monetary policy. For different levels of the

banked population share, we decompose welfare improvements associated with the

transition from the economy without digital currency and standard Taylor rule to

the economy with digital currency and Ramsey-optimal two instrument monetary

policy. These welfare gains are associated with: (i) introduction of digital currency,

(ii) optimal conventional monetary policy, and (iii) optimal RDC
t setting.

Firstly, we observe that for the economy with low initial financial inclusion

(Γh → 0) the welfare improvements are mainly associated with introduction of

digital currency as a legal tender. As the proportion of UHH is relatively high, en-

dowing them with digital currency leads to higher aggregate welfare. As their share

decreases, we observe that the welfare benefits associated with provision of digital

currency go to zero. Secondly, we see that as the proportion of BHH grows, the

importance of optimal conventional monetary policy for welfare increases. Thirdly,

our main finding is that deviating from Rt = RDC
t is welfare improving, but the wel-

fare improvement is negligible and of order of numerical approximation error. The

decomposition of the welfare gains with respect to the cost-push shock are shown

in Figure 6a. Similar to our analysis with the TFP shock, we observe that the

welfare improvement associated with introduction of digital currency diminish with

the population share of BHH and that zero-spread policy is very close to optimal.

The results are qualitatively similar with higher values of the adjustment costs of

holding CBDC κDC , and are available in the appendix A.2.8.

substitute for deposits, then the two instruments available to the policy maker would be collinear.

26

Electronic copy available at: https://ssrn.com/abstract=4102397



Figure 6: Welfare improvement decomposition

(a) TFP shock
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(b) Cost-push shock
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Note: Panel A: TFP shock, Panel B: cost-push shock. Vertical axis indicates % increase in welfare

compared to baseline specification without digital currency access.

4 Macroprudential Policy and CBDC Design

4.1 Financial Taxes and Subsidies

We introduce macroprudential policy instruments in the form of taxes and subsidies

to the bank balance sheet. Let τNt denote the subsidy on bank net worth, τDC
t is a

direct tax on digital currency holdings of the BHH and an equivalent subsidy to the

UHH, and τKt is a tax on bank equity holdings. The government’s budget constraint
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would then be given by:

τNt ΓhNt − τYt = τKt ΓhK
b
t + Γh(T

h
t + τDC,h

t DCh
t ) + Γu(T

u
t + τDC,u

t DCu
t ). (49)

With these taxes and subsidies in place, we can rewrite the balance sheet constraint

of an individual banker, (24), as:(
1− τKt +

κb

2
x2t

)
Qtk

b
t = dt + dct + (1 + τNt )nt, (50)

and the excess return on capital over fiat currency deposits, (30), and cost advantage

of digital currency deposits over fiat currency deposits, (31), respectively, are defined

as:

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− (1− τKt )
Rt

πt+1

}]
, (51)

and the optimal leverage ratio of the banker, (29), is:

ϕt =
(1 + τNt )υt

θb − µt − µDC
t xt +

κb

2
x2tυt

. (52)

We first look at the effects of a permanent increase in tax and subsidy rates.

Table 4 summarises the changes in of aggregate variables, as well as of welfare, in

the deterministic steady state. We observe that, compared to baseline case, the

subsidy to net worth, τN , and introduction of τDC , are welfare improving, while the

tax on bank equity, τK , is not. The subsidy to net worth alleviates the inefficiencies

associated with the competitive equilibrium in the presence of financial frictions.

The subsidy to net worth increases the ability of the banker to finance equity and,

thus, increases output and consumption. We note that even a small subsidy to

net-worth of 0.1% induces increases in net worth by more than 2% and increase in

output of more than 1%. The subsidy, however, increases volatility of the aggregate

variables, most significantly that of deposits. Inflation volatility, however, declines,

compared to baseline.

The tax and subsidy on digital currency, τDC , primarily serves the role of a

redistribution device, since it is a tax on BHH CBDC holdings and a subsidy to

UHH CBDC holdings. Given its design, it does not change the levels of output and

consumption, but it does make deposits and net worth more volatile. This is due

to the fact that the tax on BHH CBDC holdings makes the household more eager

to substitute its digital currency holdings for deposits, which increases volatility
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thereof and, thus, makes bank net worth more volatile as well. The redistibutive

properties of the instrument are manifested in an increase in the inequality measure,

ω, that signifies a less egalitarian level of consumption across households. A striking

increase in the aggregate welfare is a direct consequence of this redistribution and

is mainly due to the concavity of the utility functions.

A tax on bank equity decreases the incentives of the banker to acquire equity

and, thus, leads to a decline in aggregate equity and output. The introduction of

this instrument, however, decreases volatility of the aggregate variables and leads to

more equitable consumption levels across households. This is due to the fact that,

by design, the UHH do not hold equity and benefit from the transfers from the BHH.

The introduction of the tax, however, is not welfare improving in steady state due

to a decrease in economic activity.

Table 4: Permanent tax policy changes

Variable Baseline τN only τDC only τK only

Ȳ 0.6898 0.6972 0.6898 0.6604
(0.0077) (0.0078) (0.0077) (0.0073)

C̄ 0.5447 0.5502 0.5437 0.5230
(0.0092) (0.0092) (0.0092) (0.0087)

Ī 0.1401 0.1424 0.1401 0.1313
(0.0021) (0.0022) (0.0021) (0.0019)

D̄ 5.9744 6.1784 5.9745 5.1938
(1.0204) (1.0590) (1.0852) (0.9038)

N̄ 1.9048 1.9528 1.9048 1.7190
(0.7242) (0.7552) (0.7229) (0.6412)

D̄C 0 0 0 0
(0.0456) (0.0494) (0.1634) (0.0387)

Q̄ 1 1 1 1
(0.0722) (0.0772) (0.0722) (0.0719)

π̄ 1 1 1 1
(0.0107) (0.0104) (0.0107) (0.0105)

ω̄ 0.3806 0.3809 0.3257 0.3791
(0.0087) (0.0086) (0.0141) (0.0085)

u(C̄h, L̄h) -111.5150 -110.5513 -118.8607 -115.4663
(0.3197) (0.3304) (1.1893) (0.3112)

u(C̄u, L̄u) -260.9348 -260.5185 -235.5938 -262.8615
(1.3410) (1.4517) (3.7737) (1.1535)

u(C̄, L̄) -186.2249 -185.5349 -177.2272 -189.1639
(0.5861) (0.6322) (1.3217) (0.5087)

Note: Table shows deterministic steady state values and the standard deviation of variables simu-

lated with TFP, cost-push, and monetary policy shocks over 2,000 periods.
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The transition path to a new stochastic steady state after the introduction of

permanent subsidy to net worth is shown in Figure 7. On impact, there is an increase

in output and consumption, but over time their levels decrease and stabilise at new

lower levels. Even though the policy induces higher deterministic steady state of

the variables, it increases their volatility and, thus, their levels in stochastic steady

state.

Figure 7: Stochastic steady state transition (permanent change to net worth subsidy,
τN)

0 50 100 150 200
0.6908

0.691

0.6912

0.6914

 Y

0 50 100 150 200
0.542

0.5425

0.543
 C

0 50 100 150 200

5.614

5.616

5.618

5.62
 K

0 50 100 150 200

4.9

4.95

5

 D

0 50 100 150 200

0.94

0.96

0.98
 N

0 50 100 150 200

0.35

0.3502

0.3504

0.3506
 DC

Note: Plots show a transition from the baseline stochastic steady to the new one induced by

a permanent change in policy. The change in policy is assumed to happen in period 10 of the

simulations.

The transition path to taxes and subsidies on CBDC is shown in Figure 8. The

figure highlights the main redistibutional property of this permanent policy change;

a tax on BHH CBDC holdings induces a sharp fall in DCh, while a subsidy to UHH

increases its CBDC holdings. The BHH switches to holding more deposits and

equity. The banker’s net worth, however, declines due to a decrease in the amount

of digital currency it receives.
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Figure 8: Stochastic steady state transition (permanent change to tax/subsidy on
digital currency, τDC)
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Note: Plots show a transition from the baseline stochastic steady to the new one induced by

a permanent change in policy. The change in policy is assumed to happen in period 10 of the

simulations.

The transition path to a permanent tax on bank equity is shown in Figure 9.

As the bank has a lower incentive to hold equity after the policy is introduced, it

scales down its liabilities; deposits and net worth decline sharply on impact. The

BHH, however, do not face this tax on their equity and, thus, decrease their deposit

holdings and substitute them with digital currency and equity, which manifests in

growth of aggregate equity.
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Figure 9: Stochastic steady state transition (permanent change to tax on bank
equity, τK)
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Note: This Figure shows a transition from the baseline stochastic steady to the new one induced

by a permanent change in policy. The change in policy is assumed to happen in period 10 of the

simulations.

4.2 Constant Spread Rules and CBDC Design

Throughout this paper, we have made two important assumptions about digital

currency implementation and related monetary policy design. Firstly, we assumed

that RDC = R in the simple rule context. Secondly, commercial banks passively

receive digital currency deposits and use them to purchase equity. In this subsection

we relax these assumptions. We show that while deviating from RDC = R does not

improve aggregate welfare, it induces different distributional outcomes, namely the

UHH benefit from RDC > R and the BHH are better-off under RDC < R. We also

show implications of different digital currency designs on welfare.
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4.2.1 Welfare Implications of Constant Spread Rules

Assume that the policymaker operates the digital currency interest rate rule of the

form,

RDC
t = Rt + δDC ,

where δDC is the constant spread term. We compare welfare outcomes of the in-

dividual households and the aggregate welfare measure to the baseline case, where

δDC = 0 and plot the corresponding welfare ratios with respect to a 1% TFP shock.

Figure 10: Welfare implications of constant spread rule
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Note: Figure plots welfare for BHH, UHH and aggregate households as a function of the spread

between the policy rate and the CBDC rate. The welfare is calculated as a per cent change from

the regime with no digital currency.

We observe that while aggregate welfare is maximised with RDC = R, positive

and negative values of δDC imply different distributional outcomes. The BHH are

better off under negative values of the spread, while the converse is true for UHH.

The UHH benefit through the savings channel, where their digital currency deposits

receive a higher rate of interest. The BHH are worse off because the banker is forced

to hold digital currency deposits at a higher rate. We investigate if these effects

can be mitigated though a different CBDC design, where digital currency does not

appear on the balance sheet of the banker – commonly referred to as a ’retail direct’

(RD) scheme, where digital currency is a direct claim on the central bank.

33

Electronic copy available at: https://ssrn.com/abstract=4102397



4.2.2 CBDC Design

As discussed, we assumed that all digital currency deposits appear on the banker’s

balance sheet. We depart from this assumption and assume that only a fraction

of digital currency deposits, γDC , appear on the banker’s balance sheet. Digital

currency deposit claims on the [private] bank, thence, are denoted by:

DCB
t = γDCDCt.

Next, we first compare welfare outcomes of the households under different values

of γDC . In Figure 11a, we observe that the RD regime (γDC = 0) is marginally

welfare improving under any population composition14 for the case when the spread

between CBDC and deposit rates are zero. We then look at the two distinct cases

with positive and negative constant spread δDC . We consider the case where δDC =

0.05% in Figure 11b. We observe that the positive spread is marginally welfare

improving under the RD regime on aggregate, and implies welfare benefits (losses)

for the UHH (BHH). We also observe that there is a break-even point at γDC = 0.5.

In Figure 11c, we proceed with the negative spread case, δDC = −0.05%. We observe

that while the negative spread is not welfare improving on aggregate, the RD regime

is more optimal. The result is robust to different population compositions. The

findings are summarised in Table 5.

Table 5: Welfare implications of different digital currency designs

δDC = 0.05% δDC = −0.05% δDC = 0%
Regime RD RI RD RI RD RI

BHH -3.53 -13.05 2.86 2.98 0.0011 0
UHH 3.87 2.69 -3.86 -6.58 0.0001 0
AGG 0.91 -3.6 -1.18 -2.76 0.0005 0

Note: Table summarises welfare for the BHH, UHH and aggregate households as a function of

the share of the spread between the policy rate and the CBDC rate. The welfare is calculated as

a percent change from the regime with no digital currency for the retail direct (RD) and retail

indirect (RI) regimes.

14. Refer to Appendix A.2.8 for the robustness checks.
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Figure 11: Welfare implications of different CBDC regimes

(a) Zero spread: δDC = 0
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(b) Positive spread: δDC = 0.05
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(c) Negative spread: δDC = −0.05
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Note: Plots summarises welfare for the BHH, UHH, and aggregate household as a function of the

share of CBDC that are a source of funding on the bank balance sheet. Panels 11a, 11b, and 11c

fix the spread between the policy rate and the CBDC rate at 0%, 5% and -5%, respectively. The

welfare is calculated as a percent change from the regime with no digital currency for the retail

direct (RD) and retail indirect (RI) schemes.
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5 Conclusion

In this paper we focus on the financial inclusion effects of introducing a stable

digital currency, namely a CBDC. We address a number of research questions as

to the welfare implications of a retail CBDC design such as: differences between

a direct claim held against a central bank verses an indirect scheme intermediated

via private banks, the implications when interest rates on CBDCs are adjustable or

fixed, and the strength of monetary policy transmission after CBDC adoption.

In the first part of this paper, we review the arguments for and against a retail

CBDC using a simple endowment economy with two types of agents. Welfare for

both sets of households improve with a retail CBDC, however we find the benefits

are stronger for the unbanked. This supports the financial inclusion channel argu-

ment: unbanked households now have a savings device to smooth consumption and

a buffer against macroeconomic fluctuations. We then extend the model to a New

Keynesian set up with banks and financial frictions to examine the macroeconomic

effects of issuing a digital currency. Similar to our endowment economy, we find

the net benefit to a retail CBDC is stronger for unbanked households. This richer

framework allows us to evaluate monetary policy rules and determine the magnitude

of monetary policy transmission. Our results suggest that the introduction of retail

CBDC amplifies monetary policy transmission to consumption. This is because the

unbanked households now hold digital currency deposits and are sensitive to the

central bank rate.

Next, we determine optimal monetary policy with two instruments: the policy

rate on regular deposits and the rate on CBDC balances. This speaks to policy

discussions on whether the CBDC rate should be adjustable or fixed, and whether

monetary policy transmission requires CBDC deposits to be responsive to the policy

rate. When CBDCs are a near-perfect substitute for bank deposits, we find optimal

policy requires the CBDC rate to track the policy rate, yielding higher welfare than

rules that require a constant rate of remuneration on the CBDC.

Our final contribution tests a number of elements of CBDC design: setting opti-

mal taxes on the CBDC, the welfare effects of different spreads between the policy

rate and the CBDC, and whether a CBDC should be intermediated through banks

or through accounts held at the central bank. Based on the distributional effects

of introducing a CBDC, we define a system of taxes and subsidies on the CBDC

held by each household type. Specifically, taxing the banked households to subsidise

unbanked households is strictly welfare improving in our setup. Considering a range

of CBDC rates above and below the policy rate, we find that when the CBDC rate
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equals the policy rate aggregate welfare is maximised. Evaluating a CBDC inter-

mediated through banks versus holding accounts directly with a central bank, we

find the direct design is welfare improving when deposits are a more efficient base

of funding for bank balance sheets than CBDC.
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A Appendix

A.1 Two-Agent Endowment Economy

A.1.1 Model without CBDC

The following equations outline a two-agent endowment economy model with no

CBDCs. Defining the functional form for household utility as logarithmic in con-

sumption,

u(Ct) = lnCt,

we define λit as the marginal utility of consumption of the type i household. Thus,

our equilibrium conditions are:

Households.

βEt
Rt

πt+1

λht+1 = λht (53)

1

Cu
t

= λut + µu
t (54)

βEt

λut+1 + µu
t+1

πt+1

= λut
[
1 + ϕM(Mt − M̄)

]
(55)

Cu
t +Mt = T u

t +
Mt−1

πt
(56)

Cu
t =

Mt−1

πt
(57)

Market clearing.

0 = Γu(T
u
t −Mt) + Γh(T

h
t − Ch

t ) (58)

Ct = ΓhC
h
t + ΓuC

u
t (59)

Mt =
Mt−1

πt
(60)

ωt = 1− Cu
t

Ch
t

(61)

Exogenous processes.

lnT h
t = ρT lnT h

t−1 + εTt (62)

lnT u
t = ρT lnT u

t−1 + εTt (63)
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A.1.2 Steady State for Endowment Economy without CBDC

Given that the steady state transfer amounts, T̄ i, are exogenously set, the steady

state is characterized by the following set of equations:

π̄ = 1,

R̄ =
1

β
,

M̄ = T̄ u
t ,

λ̄u = β,

µ̄u = 1− β,

C̄h = T̄ h,

C̄ = ΓC̄h + (1− Γ)C̄u,

ω̄ = 1− C̄u

C̄h
.

A.1.3 Model with CBDC

As above in Appendix A.1.1, the functional form for household utility is logarithmic

in consumption. Thus, our equilibrium conditions are:

Households.

1

Ch
t

= λht (64)

λht = βEt
Rt

πt+1

λht+1 (65)

λht
(
1 + κDCDCh

t

)
= β

RDC
t

πt+1

λht+1 (66)

χDC,h
t =

κDC

2

(
DCh

t

)2
(67)

1

Cu
t

= λut + αMµ
u
t (68)

βEt

λut+1 + µu
t+1

πt+1

= λut
[
1 + ϕM(Mt − M̄)

]
(69)

λut (1 + κDCDCu
t ) = βEt

RDC
t

πt+1

λut+1 (70)

χDC,u
t =

κDC

2
(DCu

t )
2 (71)

Cu
t +Mt +DCu

t + χDC,u
t = T u

t +
Mt−1 +RDC

t−1DC
u
t−1

πt
(72)
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αMC
u
t =

Mt−1

πt
(73)

Market clearing.

ΓhT
h
t + ΓuT

u
t = Ct + Γhχ

DC,h
t + Γuχ

DC,u
t (74)

Ct = ΓhC
h
t + ΓuC

u
t (75)

Mt =
Mt−1

πt
(76)

ωt = 1− Cu
t

Ch
t

(77)

Exogenous processes.

lnT h
t = ρT lnT h

t−1 + εTt (78)

lnT u
t = ρT lnT u

t−1 + εTt (79)

A.1.4 Steady State for Endowment Economy with CBDC

Given that the steady state transfer amounts, T̄ i, are exogenously set, the steady

state is characterized by the following set of equations:

π̄ = 1,

R̄ =
1

β
,

D̄C
h
= D̄C

u
= 0,

R̄DC =
1

β
+

1

β
κDCD̄C

u
,

C̄h = T̄ h + D̄C
h (
R̄DC − 1

)
− χ̄DC,h,

C̄u = T̄ u + D̄C
u (
R̄DC − 1

)
− χ̄DC,u,

M̄ = αM C̄
u,

λ̄u =
1

C̄u
(
1 + αM

β
− αM

) ,
µ̄u = λ̄u

(
1

β
− 1

)
,

C̄ = ΓhC̄
h + ΓuC̄

u,

ω̄ = 1− C̄u

C̄h
.
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A.1.5 Endowment economy IRFs

Below are the IRFs related to the endowment economy. We observe that presence

of digital currency in the economy allows for better risk-sharing between the house-

holds. This is more vivid in the money supply shock case; as the money supply shock

influences the UHH, they are eager to smooth consumption through borrowing in

digital currency, which leads to perfect stabilization of aggregate consumption.

Figure 12: IRFs to 1% endowment shock
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Note: Price variables are in levels, quantity variables are in percent deviations from steady state.

The proportion of banked and unbanked households are set to a baseline value of Γh = Γu = 0.5.

Figure 13: IRFs to 1% money supply shock
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A.2 TANK model with Central Bank Digital Currency

A.2.1 The New Keynesian Phillips Curve

If we log linearize Equation (12) about the non-inflationary steady state, we yield

the NKPC. First start by totally differentiating (12):

(2π̄ − 1)dπt =
ϵ

κ
dMCt + β(2π̄ − 1)Etdπt+1,

where π̄ = M̄C = 1 (recall that we have production subsidy τ to offset distortions

arising from monopolistic competition). Substitute these values in and assume that

dMCt =MCt − M̄C to get the log-linearized NKPC:

π̂t =
ϵ

κ
M̂Ct + βEtπ̂t+1, (80)

where hatted variables denote log-deviations from steady state values (for any vari-

able xt : x̂ = ln xt

x̄
, and where we calibrate κ to a standard value as in, for example,

Blanchard and Gaĺı (2007):

κ =
ϵθ

(1− θ)(1− βθ)
.

A.2.2 Household Optimisation Problem

The FOCs to the BHH problem are:

λht =
1

Ch
t + ζh0

(Lh
t )

1+ζ

1+ζ

, (81)

wt = ζh0 (L
h
t )

ζ , (82)

1 = EtΛ
h
t,t+1

Rt

πt+1

, (83)

1 = EtΛ
h
t,t+1

zkt+1 + (1− δ)Qt+1

Qt + κhΓh

(
Kh

t

Kt

) , (84)

1 = EtΛ
h
t,t+1

RDC
t

πt+1(1 + κDCDCh
t )
. (85)

The FOCs to the UHH problem are:

λut + αMµ
u
t =

1

Cu
t + ζu0

(Lu
t )

1+ζ

1+ζ

, (86)

λutwt =
ζu0

Cu
t − ζu0

(Lu
t )

1+ζ

1+ζ

(Lu
t )

ζ , (87)
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λut
[
1 + ϕM(Mt − M̄)

]
= βEt

[
λut+1 + µu

t+1

πt+1

]
, (88)

1 = βEt

λut+1

λut

RDC
t

πt+1(1 + κDCDCu
t )
. (89)

A.2.3 Rewriting the Banker’s Problem

To setup the problem of the banker as in Section 3.3.2, first iterate the banker’s flow

of funds constraint (25) forward by one period, and then divide through by nt to

yield:
nt+1

nt

=

(
zkt+1 + (1− δ)Qt+1

)
Qt

Qtk
b
t

nt

− Rt

πt+1

dt
nt

− RDC
t

πt+1

dct
nt

.

Rearrange the balance sheet constraint (24) and use the fact that dct/nt = xtϕt, to

yield the following:
dt
nt

=
κb

2
x2tϕt + ϕt − xtϕt − 1.

Substitute this value for dt/nt into the expression for nt+1/nt, and we get:

nt+1

nt

=

(
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

)
ϕt+

(
Rt

πt+1

− RDC
t

πt+1

)
xtϕt+

(
1− κb

2
x2tϕt

)
Rt

πt+1

.

Substituting this expression into (26), yields the following:

ψt = Et

Λh
t,t+1(1− σb + σbψt+1)


(

zkt+1+(1−δ)Qt+1

Qt
− Rt

πt+1

)
ϕt

+
(

Rt

πt+1
− RDC

t

πt+1

)
xtϕt

+
(
1− κb

2
x2tϕt

)
Rt

πt+1




= µtϕt + µDC
t xtϕt +

(
1− κb

2
x2tϕt

)
υt,

which is (3.3.2) in the text.

A.2.4 Solving the banker’s problem

With {µt, µ
DC
t } > 0, the banker’s incentive compatibility constraint binds with

equality, and so we can write the Lagrangian as:

L = ψt + λt(ψt − θbϕt),

where λt is the Lagrangian multiplier. The FOCs are:

(1 + λt)

[
µt + µDC

t xt −
κb

2
x2tυt

]
= λtθ

b, (90)
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ψt = θbϕt. (91)

Substitute (91) into the banker’s objective function to yield:

ϕt =
υt

θb − µt − µDC
t xt +

κb

2
x2tυt

, (92)

which is (29) in the text.

A.2.5 Full Set of Equilibrium Conditions

Households.

wt = ζh0L
h
t (93)

1 = EtΛ
h
t,t+1

Rt

πt+1

(94)

1 = EtΛ
h
t,t+1

zkt+1 + (1− δ)Qt+1

Qt + κhΓh

(
Kh

t

Kt

) (95)

1 = EtΛ
h
t,t+1

RDC
t

πt+1(1 + κDCDCh
t )

(96)

Cu
t +Mt + χM

t +DCu
t + χDC,u

t + T u
t = wtL

u
t +

Mt−1

πt
+
RDC

t−1

πt
DCu

t−1 (97)

λut
λut + αMµu

t

wt = ζu0 (L
u
t )

ζ (98)

λut + αMµ
u
t =

1

Cu
t + ζu0

(Lu
t )

1+ζ

1+ζ

(99)

βEt

λut+1 + µu
t+1

πt+1

= λut
[
1 + ϕM(Mt − M̄)

]
(100)

λut (1 + κDCDCu
t ) = βEtλ

u
t+1

RDC
t

πt+1

(101)

αMC
u
t =

Mt−1

πt
(102)

Production.

Qt = 1 +
κI
2

(
It
Ī

)2

− κI
Ī

(
It
Ī
− 1

)
(103)

Kt = (1− δ)Kt−1 + It (104)

Yt = AtK
α
t−1L

1−α
t (105)

wt = (1− α)At

(
Kt−1

Lt

)α

(106)
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MCt =
1

At

(
zkt
α

)α(
wt

1− α

)1−α

(107)

πt(πt − 1) =
1

κ
[ϵMCt + 1− ϵ+ τϵ− τ ]

+ Et

[
Λh

t,t+1(πt+1 − 1)πt+1
Yt+1

Yt

]
+ ξπt

(108)

Banks.

ψt = θbϕt (109)

ϕt =
υt

θb − µt − µDC
t xt +

κb

2
x2tυt

(110)

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

}]
(111)

µDC
t = Et

[
Ωt,t+1

{
Rt

πt+1

− RDC
t

πt+1

}]
(112)

υt = Et

[
Ωt,t+1

Rt

πt+1

]
(113)

Ωt,t+1 = Λh
t,t+1(1− σb + σbψt+1) (114)

Monetary and fiscal policy.

Rt

R̄
=

(
Rt−1

R̄

)ρR (
πϕπ
t XϕY

t

)1−ρR
exp(εRt ) (115)

−τYt = ΓhT
h
t + ΓuT

u
t (116)

RDC
t = Rt (117)

Market clearing.

Ct = ΓhC
h
t + ΓuC

u
t (118)

Lt = ΓhL
h
t + ΓuL

u
t (119)

DCt = ΓhDC
h
t + ΓuDC

u
t (120)

Yt = Ct +

[
1 + Φ

(
It
Ī

)]
It +

κ

2
(πt − 1)2Yt

+ Γh(χ
h
t + χb

t + χDC,h
t ) + Γu(χ

M
t + χDC,u

t )

(121)

Y f
t = Ct +

[
1 + Φ

(
It
Ī

)]
It

+ Γh(χ
h
t + χb

t + χDC,h
t ) + Γu(χ

M
t + χDC,u

t )

(122)

Xt =
Yt

Y f
t

(123)
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Kt = Γh(K
h
t +Kb

t ) (124)

Nt = σb

[
(zkt + (1− δ)Qt)K

b
t−1 −

Rt−1

πt
Dt−1 −

RDC
t−1

πt

DCt−1

Γh

]
+ γb(z

k
t + (1− δ)Qt)

Kt−1

Γh

(125)

QtK
b
t = ϕtNt (126)(

1 +
κb

2
x2t

)
QtK

b
t = Dt +

DCt

Γh

+Nt (127)

xt =
DCt

QtΓhKb
t

(128)

Exogenous processes.

lnAt = ρA lnAt−1 + εAt (129)

ξπt = ρπξ
π
t−1 + επt (130)

A.2.6 Model Steady State

In the non-stochastic steady state, we have the following:

Q̄ = 1,

π̄ = 1,

R̄ =
1

β
,

R̄DC = R̄.

We define the discounted spreads on equity and DC as:

s = β[z̄k + (1− δ)]− 1, (131)

sDC = 1− βR̄DC = 0, (132)

which we consider to be endogenous and exogenous, respectively.15

15. Note that we could have a non-zero discounted spread between the return on digital currency
and the deposit.
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From the BHH’s FOC with respect to equity, (84), we have:

1 = β

[
z̄k + (1− δ)

1 + κhΓh
K̄h

K̄

]

1 + κhΓh
K̄h

K̄
= β [z̄ + (1− δ)]

Γh
K̄h

K̄
=

s

κh
.

(133)

Additionally, in steady state we have:

Ω̄ = β(1− σb + σbψ̄),

ῡ =
Ω̄

β
,

µ̄ = Ω̄

[
z̄k + (1− δ)− 1

β

]
,

µ̄DC = Ω̄

[
1

β
− R̄DC

]
,

and so, using (131) and (132), we can write:

µ̄

ῡ
= s,

µ̄DC

ῡ
= sDC =⇒ µ̄DC = 0.

Next, define J as:

J =
nt+1

nt

=
[
z̄k + (1− δ)

] K̄b

N̄
− R̄

D̄

N̄
− R̄DC D̄C

ΓhN̄
,

and use the following:

D̄

N̄
=

κb

2
ϕ̄x̄2 + ϕ̄− x̄ϕ̄− 1,

ϕ̄ =
K̄b

N̄
,

D̄C

ΓhN̄
= ϕ̄x̄,
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to write J as:

J = (z̄k + (1− δ)− R̄)ϕ̄+

(
1− κb

2
x̄2ϕ̄

)
R̄ + (R̄− R̄DC)x̄ϕ̄

=
1

β

[
p(s, sDC)ϕ̄+ 1

]
,

where

p(s, sDC) ≡ s+ sDC x̄− κb

2
x̄2

is defined as the return premium.

Then, from (42) we have:

N̄ = σb

{[
z̄k + (1− δ)

]
K̄b − R̄D̄ − R̄DC D̄C

Γ

}
+ γb

[
z̄k + (1− δ)

] K̄
Γ

N̄

N̄
= σb

{[
z̄k + (1− δ)

] K̄b

N̄
− R̄

D̄

N̄
− R̄DC D̄C

ΓN̄

}
+
γb
N̄

[
z̄k + (1− δ)

] K̄
Γ

β = σbβJ +
γb
N̄
β
[
z̄k + (1− δ)

] K̄
Γ

= σbβJ +
γbK̄

b

N̄

(
1 + κhΓ

K̄h

K̄

)
K̄

ΓK̄b

= σbβJ + γb(1 + s)ϕ̄
1

ΓK̄b

K̄

= σbβJ + γb(1 + s)ϕ̄
1

K̄−ΓK̄h

K̄

= σb
[
p(s, sDC)ϕ̄+ 1

]
+ γb(1 + s)ϕ̄

1

1− s
κh

β = σb +

[
σbp(s, s

DC) + γb
1 + s

1− s
κh

]
ϕ̄,

or

ϕ̄ =
β − σb

σbp(s, sDC) + γb
1+s

1− s

κh
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Equation (26) in steady state gives us:

ψ̄ = β(1− σb + σbψ̄)J

= βJ − βσbJ + βσbψ̄J

= β(1− σb)J + βσbψ̄J

=
β(1− σb)J

1− βσbJ

=
(1− σb)

[
p(s, sDC)ϕ̄+ 1

]
1− σb

[
p(s, sDC)ϕ̄+ 1

]
=

(1− σb)
[
p(s, sDC)ϕ̄+ 1

]
1− σb − σbp(s, sDC)ϕ̄

,

and from (91) we have

ψ̄ = θbϕ̄.

Combine the expressions for ϕ̄ and ψ̄ to get:

θb(β − σb)

σbp(s, sDC) + γb
1+s

1− s

κh

=

(1− σb)

[
p(s,sDC)(β−σb)

σbp(s,sDC)+γb
1+s

1− s
κh

+ 1

]

1− σb − σb

[
p(s,sDC)(β−σb)

σbp(s,sDC)+γb
1+s

1− s
κh

] ,

then rearrange:

0 = H(s, sDC)

= (1− σb)

[
βp(s, sDC) + γb

1 + s

1− s
κh

] [
σbp(s, s

DC) + γb
1 + s

1− s
κh

]
− θb(β − σb)

[
σb(1− β)p(s, sDC) + (1− σb)γb

1 + s

1− s
κh

]
.

In the absence of any taxes or subsidies on digital currency deposits, and in the

case where sDC = µ̄DC = 0, the fixed management cost of digital currency κDC > 0

imply that D̄C = x̄ = 0. Thus, we can write the risk premium as:

p(s, 0) → s,
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and

H(s, 0) = (1− σb)

[
sβ + γb

1 + s

1− s
κh

] [
sσb + γb

1 + s

1− s
κh

]
− θb(β − σb)

[
σb(1− β)s+ (1− σb)γb

1 + s

1− s
κh

]
.

We can observe that as γb → 0,

H(s, 0) = (1− σb)s
2βσb − θb(β − σb) [σb(1− β)s]

=⇒ s→ θb
(β − σb)(1− β)

(1− σb)β
.

Thus, there exists a unique steady state equilibrium with positive spread s > 0 for

a small enough γb.

Given s, we then yield:

z̄k =
1

β
(1 + s)− (1− δ),

and since in the steady state M̄C = 1, we also have:

M̄C =

(
z̄k

α

)α(
w̄

1− α

)1−α

= 1

=

(
Ȳ

K̄

)α(
Ȳ

L̄

)1−α

=

(
Ȳ

K̄

)α(
z̄k

α

)α(1−α)
α−1

,

with

w̄ = (1− α)
Ȳ

L̄
,

z̄k = α
Ȳ

K̄
,

=⇒ w̄ = (1− α)

(
z̄k

α

) α
α−1

.

Put these together to get:

K̄

Ȳ
=

(
z̄k

α

) 1−α
α−1

=
α

z̄k
.
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From the FOCs of the BHH and UHH problem, we have:

w̄ = ζh0 (L̄
h)ζ ,

w̄ =
ζu0 (L̄

u)ζ(1 + αM

β
− αM)[

Cu − ζu0
(Lu)1+ζ

1+ζ

] .

But since we have that ζu0 =
ζh0

(1+
αM
β

−αM )
, we can write:

w̄ = ζh0 L̄
ζ .

We can then use our previous expression for w̄ to express L̄ as a function of z̄k:

L̄ =

[
1− α

ζh0

(
z̄k

α

) α
α−1

] 1
ζ

.

Since we know that

w̄ = (1− α)
Ȳ

L̄
,

we yield:

Ȳ =
ζh0
α

[
1− α

ζh0

(
z̄k

α

) α
α−1

] 1+ζ
ζ

.

Additionally, we have:
Ī

K̄
= δ,

and

1

β
=

α Ȳ
K̄
+ 1− δ

1 + κhΓh
K̄h

K̄

⇔ Ȳ

K̄
=
β−1 (1 + s) + δ − 1

α
,

from (133), and:
Ī

Ȳ
=

Ī/K̄

Ȳ /K̄
=

αδ

β−1(1 + s) + δ − 1
.

These of course imply:

K̄ =

[
1− α

ζh0

(
z̄k

α

) α
α−1

] 1+ζ
ζ

ζh0
β−1(1 + s) + δ − 1
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With K̄ and s in hand, we can then turn back to the BHH’s FOC wrt to equity,

(84), to find K̄h:

K̄h =
s

κh

K̄

Γh

,

and also get K̄b:

K̄b =
K̄

Γh

− K̄h.

This then gives us N̄ as we already solved ϕ̄:

N̄ =
K̄b

ϕ̄
.

Then D̄ is also solved as a residual from (24):

D̄ = K̄b − N̄ .

Given Ȳ , Ī, and K̄, we can get C̄:

C̄

Ȳ
= 1− Ī

Ȳ
− κh

2
(ΓhK̄

h)2
(
K̄

Ȳ

)−1

.

From the UHH’s FOC with respect to M , we have:

µ̄u = λ̄h
(
1

β
− 1

)
,

and the FOC with respect to consumption gives us an expression for the marginal

utility from consumption:

λ̄h
(
1 +

αM

β
− αM

)
.

Thus, we can express λ̄u as a function of the marginal utility from consumption:

1

λ̄u
=

(
1 +

αM

β
− αM

)(
C̄u − ζu0

(L̄u)1+ζ

1 + ζ

)
,

noting that because of the values of ζh0 and ζu0 , we have:

L̄u =

(
w̄

ζh0

) 1
ζ

.

Finally, much like aggregate digital currency holdings, the BHH will not hold

any digital currency holdings in steady state due to the presence of management
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costs. This means that in steady state:

D̄C
h
= 0,

which, of course, implies:

D̄C
u
= 0.

A.2.7 Fundamental-Based Shocks

Figures 14 and 15 present results in response to a 1 basis point TFP shock. The

addition of a CBDC increases the sensitivity of consumption of UHH to fundamental-

based shocks. The intuition is as follows: the addition of a savings vehicle allows

the UHH to change consumption more aggressively in response to positive shocks

to TFP.
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Figure 14: IRFs to a 1% ann. TFP shock
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Note:

Figure plots impulse responses of model variables with respect to a 1 % annualized innovation to TFP. Time periods are measured in quarters, and responses

are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R) and Digital Currency Returns (RDC) which are

expressed as annualised net rates.
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Figure 15: IRFs to a 1 % ann. cost-push shock
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Note: Figure plots impulse responses of model variables with respect to a 1 % annualized cost-push shock. Time periods are measured in quarters, and

responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R) and Digital Currency Returns (RDC)

which are expressed as annualised net rates.
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Figure 16: Optimal policy IRFs to a 1 basis point TFP shock
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Note: Figure plots impulse responses of model variables with respect to a 1 basis point innovation to TFP. Time periods are measured in quarters, and

responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R) and Digital Currency Returns (RDC)

which are expressed as annualised net rates.
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Figure 17: Optimal policy IRFs to a 1 basis point cost-push shock
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Note: Figure plots impulse responses of model variables with respect to a 1 basis point cost-push shock. Time periods are measured in quarters, and

responses are measured as a percent deviation from steady state except for Inflation (π), Nominal Interest Rates (R) and Digital Currency Returns (RDC)

which are expressed as annualised net rates.
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A.2.8 Impact of Digital Currency Adjustment Costs

As noted in Section 3.7, as the cost parameter of digital currency holdings, κDC → 0

– which can be thought of as the degree of imperfection of digital currency relative

to deposits – deposits and digital currency become perfect substitutes and, thus,

the importance of RDC as a distinct policy instrument is attenuated. We perform

sensitivity analysis to show how imperfections in design of digital currency influence

optimal policy.

In Figures 18 and 19 we illustrate the dynamics of the model with respect to a

TFP shock and cost-push shock, respectively, for different levels of κDC . We observe

that a higher degree of imperfection of digital currency design leads to two distinct

consequences: (i) potency of monetary policy to reduce variance of inflation and

output is attenuated, (ii) optimal spread between R and RDC is higher. A higher

degree of imperfection of digital currency has direct effect on consumer welfare as

the households face higher digital currency adjustment costs.

Figure 18: IRFs to a 1bp TFP shock (low and high κDC)

10 20 30 40

-1

0

1

2
:

0.002
0.0005

10 20 30 40
0

10

20
Q

10 20 30 40
-5

0

5

10
!

10 20 30 40

0

0.2

0.4

0.6

Y

10 20 30 40
0

5

10
D

10 20 30 40

0

0.5

1
DC

10 20 30 40
-0.15

-0.1

-0.05

0
K

10 20 30 40
0

10

20

N

10 20 30 40
-0.02

-0.01

0
R - RDC

61

Electronic copy available at: https://ssrn.com/abstract=4102397



Figure 19: IRFs to a 1bp cost-push shock (low and high κDC)
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Figure 20: Relative welfare comparisons (% change; κDC = 0.002)
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Figure 21: Relative welfare comparisons (% change; κDC = 0.0005)
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Figure 22: Welfare decomposition, 1% ann. TFP shock (κDC = 0.002)
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Figure 23: Welfare decomposition, 1% ann. cost-push shock (κDC = 0.002)
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A.2.9 Welfare and Optimal Policy

Given the period utility function of the type j household,

U j
t = ln

(
Cj

t − ζj0
(Lj

t)
1+ζ

1 + ζ

)
,

the second-order Taylor expansion of U j
t about the deterministic steady state (C̄j, L̄j)

is:

U j
t − Ū ≃ Ū j

CC̄
j

(
Cj

t − C̄j

C̄j

)
+ Ū j

LL̄
j

(
Lj
t − L̄j

L̄j

)

+
1

2
Ū j
CC(C̄

j)2

(
Cj

t − C̄j

C̄j

)2

+
1

2
Ū j
LL(L̄

j)2

(
Lj
t − L̄j

L̄j

)2

+

+ Ū j
CLC̄

jL̄j

(
Cj

t − C̄j

C̄j

)(
Lj
t − L̄j

L̄j

)
,

where we ignore terms independent of policy, and where:

Ū j
C =

1

C̄j − ζj0
(L̄j)1+ζ

1+ζ

,

Ū j
L = − ζj0

C̄j − ζj0
(L̄j)1+ζ

1+ζ

(L̄j)ζ ,

Ū j
CC = − 1(

C̄j − ζj0
(L̄j)1+ζ

1+1ζ

)2 ,
Ū j
LL =

−
(
C̄j − ζj0

(L̄j)1+ζ

1+1ζ

)
ζj0ζ(L̄

j)ζ−1 −
(
ζj0(L̄

j)ζ
)2(

C̄j − ζj0
(L̄j)1+ζ

1+1ζ

)2 ,

Ū j
CL = − ζj0(

C̄j − ζj0
(L̄j)1+ζ

1+ζ

)2 (L̄j)ζ .
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