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Abstract

In this paper we study the macroeconomic effects of introducing a retail cen-
tral bank digital currency (CBDC). Using a two agent framework and en-
dowment economy with banked and unbanked households, we show digital
currencies address financial inclusion of the unbanked, by providing a sav-
ings vehicle they allow households to smooth consumption. Finally, we study
the monetary policy implications in a New Keynesian setting. Welfare gains
under strict inflation targeting is higher for a retail indirect CBDC with a pri-
marily unbanked population. An indirect CBDC distributed to households
by commercial banks is preferred to a direct CBDC distributed by the central
bank. Taken together, our findings suggest a stronger use case for CBDCs in
emerging economies with a lower degree of financial inclusion.
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1 Introduction
Central bank digital currencies (CBDC) are digital tokens, similar to a cryptocur-
rency, issued by a central bank. Central banks are actively studying the potential
adoption of CBDCs, and notable examples include Sweden’s E-Krona and China’s
Digital Currency Electronic Payment. In this emerging literature there is a focus
on the macroeconomic effects (Kumhof et al. 2021; Benigno, Schilling, and Uh-
lig 2022; Ferrari Minesso, Mehl, and Stracca 2022), and implications for banking
(Chiu et al. 2019; Skeie 2019; Keister and Sanches 2021; Agur, Ari, and Dell’Ariccia
2022). While CBDCs present obvious advantages – the increased financial inclusion
of the unbanked population, improving cross-border payments, and facilitating fis-
cal transfers – there are still many unresolved issues in their design. For example,
Do CBDCs attenuate or amplify monetary policy transmission channels? Is the
interest rate adjustable or fixed? Is there a distinction between retail CBDCs which
is distributed directly to households by the central bank or indirectly through the
commercial banks?

In answering these questions, our paper focuses on CBDC design and in partic-
ular the financial inclusion effects of introducing a digital currency. The paper is
divided into three parts. First, we review the arguments for and against a retail
CBDC using a simple endowment economy with two types of agents. We then ex-
tend the model to examine the macroeconomic effects of issuing a digital currency
when there is a banking sector and production. This allows us to evaluate the rel-
ative benefits of a direct or indirect retail design. Finally we evaluate monetary
policy rules in a New Keynesian setup, and determine the magnitude of monetary
policy transmission for each CBDC design.

In the first part, we start with a simple two agent endowment economy with
a representative banked household (BHH) and unbanked household (UHH). The
UHH uses money while the BHH have access to deposits.1 We introduce a digital
currency that can be used by the UHH as an alternative to cash. The central bank
can pay an interest rate on this retail CBDC. The primary benefit of this digital
currency is that it is a more effective savings vehicle as it relaxes the cash-in-advance
(CIA) constraint of the UHH. Welfare for both sets of households improve with a
retail CBDC; provided that the net interest rate on the digital currency is positive.
However negative rates can lead to potential net welfare losses. This contributes
to policy discussions on the role of retail CBDCs in being able to directly charge

1. The BHH and UHH can be thought of as Ricardian and non-Ricardian households, respec-
tively, as is typical in the two-agent New Keynesian literature. See, for example, Debortoli and
Galí (2017).
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negative rates, giving the monetary authority the ability to tax household money
balances. While this may have some merits in periods of low inflation, from a welfare
perspective we show that this creates a cost.

A second research question we answer is on CBDC design, and whether a retail
CBDC should be direct or indirect.2 An indirect retail system is one in which finan-
cial intermediaries distribute the digital currency, and all households hold digital
currency deposits with a retail bank (financial intermediary). A direct retail system
is when household types hold digital currency with the central bank, and therefore it
is no longer on the financial intermediary’s balance sheet. A clear difference between
the two regimes is that a direct retail CBDC – though it addresses financial inclusion
of the unbanked population – is problematic if banked households substitute away
from bank deposits to hold their savings directly with the central bank. This causes
financial dis-intermediation of the banking system.

To illustrate this point we extend the baseline model to include production and
a financial intermediary that lends to firms that use capital in production. In this
setup, we have a trade-off between direct and indirect retail CDBCs. So while the
direct CBDC can help the unbanked, it can have negative welfare effects in general
equilibrium if a significant fraction of banked households substitute toward the retail
CBDC, dis-intermediating banks and reducing capital and production. We evaluate
welfare of the retail designs with respect to an economy with no digital currency.
We hypothesize that the relative welfare of a indirect CBDC is increasing in the
share of BHHs.

Our results show that an indirect CBDC design is the “first-best” design, strictly
dominating the direct CBDC design in our baseline calibration. Conducting a sen-
sitivity analysis with respect to the share of the BHH, we find the net benefits to
retail CBDCs are higher for an economy primarily populated by UHH. AWe also
find an indirect CBDC design is strictly preferred to a direct CBDC for both BHH
and UHH.

In the third part of the paper, we add monetary policy and endogenous labor
supply to the model with monopolistic pricing of firms. Does a CBDC attenuate
or amplify monetary policy transmission? We hypothesize that transmission of
monetary policy depends crucially on the CBDC design. For an indirect retail
system, monetary policy still transmits through to digital currency deposits. If
the CBDC rate can be set independently to a Taylor rule, then it will attenuate
monetary policy. Conversely a CBDC rate that follows deposit rates may amplify

2. Some useful references are: https://voxeu.org/article/cbdc-architectures-financial-system-
and-central-bank-future and https://voxeu.org/article/central-bank-digital-currencies-drivers-ap
proaches-and-technologies.
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transmission. Next, we evaluate welfare criteria for each CBDC design with respect
to productivity. Our results suggest that monetary policy transmission is stronger
for the indirect retail design. Comparing all regimes under strict inflation targeting,
an indirect CBDC design has the highest welfare in an economy populated primarily
by UHH. The greatest use case for retail CBDCs therefore lies in emerging markets
with low levels of financial inclusion.

The remainder of the paper is structured as follows. In Section 1.1 we summarize
the contributions of our paper to related literature. In Section 2 we outline the
baseline endowment economy, and examine the welfare implications of introducing
a CBDC. In Section 3 we extend our framework to include a financial intermediary
and production. Using this model we examine the welfare implications of the direct
and indirect CBDC design. In Section 4 we outline a two-agent New Keynesian
(TANK) framework, evaluating different rules for the digital currency and optimal
inflation targeting across different CBDC designs. Section 5 concludes the paper.

1.1 Related Literature

Our work relates to an emerging literature on the macroeconomic implications of
CBDCs (Fernández-Villaverde et al. 2021; Andolfatto 2021; Benigno, Schilling, and
Uhlig 2022; Chiu et al. 2019; Keister and Sanches 2021; Benigno 2019; George, Xie,
and Alba 2020; Skeie 2019; Ikeda 2020; Kumhof et al. 2021; Cong and Mayer 2021;
Agur, Ari, and Dell’Ariccia 2022). The CBDC literature primarily focus on macroe-
conomic implications. For example, the domestic effects are documented in Kumhof
et al. (2021). Skeie (2019) studies an equilibrium in which the cryptocurrency is
susceptible to bank runs. The financial intermediation properties of CBDCs have
been studied in Keister and Sanches (2021), which determines conditions in which
the private sector is dis-inter-mediated with CBDC leading to welfare losses. Chiu
et al. (2019) study the role of CBDCs when banks have market power, and show the
introduction of CBDCs can lead to increased competition among banks, an increase
in deposit rates and lending raising welfare. Our paper is in studying the benefits of
CBDCs in a two agent framework. By studying households that do not have access
to a financial asset, we focus on the financial inclusion benefits of a retail CBDC.

On the open economy front, Benigno, Schilling, and Uhlig (2022) model a two
country framework in which a global stablecoin, like that proposed by Facebook’s
Libra/Diem, is traded freely between both countries. They determine an equilib-
rium result of synchronization of interest rates across the two countries in which
users are indifferent between holding the global cryptocurrency and the domestic
currency. Ferrari Minesso, Mehl, and Stracca (2022) setup a two country model
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with the CBDC issued by the home country. They find productivity spillovers are
amplified in the presence of a CBDC, and it reduces the effectiveness of the foreign
country’s monetary policy. Cong and Mayer (2021) model the political economy
of currency competition with countries choosing between adopting a CBDC and
a private cryptocurrency. They show that emerging market countries with weak
fundamentals can derive net welfare benefits from cryptocurrency adoption as an
alternative to adopting a CBDC or the US dollar. The novelty of our framework in
this literature is to include an additional set of households (the unbanked) that do
not have access to domestic banking channels. Critically, the unbanked only have
access to digital currency as a medium of exchange and savings vehicle. Within this
literature we are the first paper to evaluate the welfare benefits of the direct and
indirect retail CBDC designs.3

The third part of the paper focuses on monetary policy transmission and interest
rate rules. Ikeda (2020) models a two-country economy in which goods are priced in
foreign currency. Domestic monetary policy transmission is weakened when prices
are denominated in a foreign currency. The channel of monetary policy transmission
in Ikeda (2020) is expenditure switching; in our paper we offer an alternative channel
through having digital currency deposits. Crucially, whether the system is retail or
indirect retail matters for monetary policy transmission to bank balance sheets.

2 Simple baseline monetary model
Below we introduce a simple two agent endowment economy. The model comprises
two types of households: the banked (BHH) and the unbanked (UHH) with super-
scripts h and u, respectively. The population is normalized to unity, with the two
types of households occupying the continuum [0, 1].

2.1 Banked and unbanked households

BHHs are proportion Γ of the population. They have access to a one-period risk-free
savings asset, Dt, which pays a gross nominal rate of interest, Rt. Conversely, the
unbanked, of proportion 1 − Γ, do not have access to the safe savings asset, thus
their only way of savings is to hold real money balances, Mt.

3. The taxonomy of direct and indirect retail CBDC designs is introduced in Auer and Böhme
2020. They provide many aspects of CBDC design, including architecture (whether it is a direct or
indirect claim on the central bank), whether it uses a distributed ledger technology (DLT), account
or token based or wholesale or retail. In this paper we focus solely on the architecture of CBDCs.
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The infinite horizon problem for the representative BHH is:

max
{Ch

t+s,Dt+s}∞s=0

Et

∞∑
s=0

βs

[
(Ch

t+s)
1−σ

1− σ

]
, (1)

subject to the period budget constraint (in real terms):

Ch
t +Dt = T h

t +
Rt−1

πt
Dt−1, (2)

where C i
t , i ∈ {h, u}, is consumption, T i

t are lump sum transfers, and πt is gross
inflation.4

The analogous problem for the representative UHH is:

max
{Cu

t+s,Mt+s}∞s=0

Et

∞∑
s=0

βs

[
(Cu

t+s)
1−σ

1− σ

]
, (3)

subject to:
Cu

t +Mt + χM
t = T u

t +
Mt−1

πt
, (4)

and a CIA constraint:
Cu

t ≤ Mt−1

πt
. (5)

Note that the UHH pays a quadratic adjustment cost, χM
t , to adjust its real money

holdings:
χM
t =

ϕM

2

(
Mt − M̄

)2
.

We also define ωt as being an “inequality measure”, defined as:

ωt = 1− Cu
t

Ch
t

, (6)

with higher (lower) values of ωt showing an increase (decrease) in consumption
inequality between the BHH and UHH in period t.

As this is a simple monetary model, we assume that there exists a monetary
authority which oversees real money balances. We assume the following law of
motion for real money balances:

Mt =
Mt−1

πt
. (7)

4. Gross inflation, πt, is defined as πt = Pt/Pt−1, where Pt is the price level.
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Finally, endowments are set exogenously and follow a stationary AR(1) process:

lnT i
t = ρT lnT i

t−1 + εTt , (8)

where εTt is exogenous disturbance to both endowments with variance σ2
T .

For a complete list of equilibrium conditions, please refer to the Appendix A.1.

2.2 Banked and unbanked households with CBDC holdings

In this subsection, we build upon the simple endowment economy presented in Sec-
tion 2, adding CBDCs which are accessibly by both types of agents.

BHHs maximize their present value discounted stream of utility:

max
{Ch

t+s,Dt+s,DCh
t+s}∞s=0

Et

∞∑
s=0

[
βs

(
(Ch

t+s)
1−σ

1− σ
+ ηhDC ln(DCh

t+s)

)]
, (9)

where ηhDC is a scaling parameter and DCh
t is CBDC holdings. We stipulate that

DCh
t enters the BHH utility function as the CBDC presents the household with

non-pecuniary benefits, such as, for example, being able to exchange with financial
transactions with the UHH.5

The budget constraint of the BHH in real terms is:

Ch
t +Dt +DCh

t = T h
t +

Rt−1Dt−1 +RDC
t−1DCt−1

πt
. (10)

As before, the UHH does not have access to the risk-free saving vehicle Dt, and
they continue to face money balances adjustment costs and a CIA constraint. Their
optimization problem is otherwise identical as before.

max
{Cu

t+s,Mt+s,DCu
t+s}∞s=0

Et

∞∑
s=0

[
βs

(
(Cu

t+s)
1−σ

1− σ

)]
, (11)

subject to:

Cu
t +Mt +DCu

t + χM
t = T u

t +
Mt−1

πt
+
RDC

t−1DC
u
t−1

πt
, (12)

and the CIA constraint,

Cu
t ≤ 1

γ

(
Mt−1

πt

)γ

(DCu
t )

1−γ. (13)

5. Additionally, the introduction of DCh into the utility function of the BHH allows us to
determine the optimal level of DCh holdings.
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The policy maker now is able to set the interest rate on digital currency holdings,
RDC

t . She uses two types of policy rules that determine the rate of return on digital
currency: a constant return rule and a constant spread rule, which are defined as:

RDC
t =

{
¯RDC const. rate (14a)

R− ∆̄DC const. spread (14b)

2.3 Welfare comparisons

In order to make welfare comparions across the different regimes and CBDC designs,
we define period welfare as having the following functional form:

Wi
t = U(C i

t) + βEtWi
t+1, (15)

where U(·) is the period utility function for the representative agent. Note that in
order to make accurate welfare comparisons, we use U(·) without CBDC holdings
for the BHH.6

Additionally, for a description of the parameterization used in our analyses,
please refer to Table 2 in Section 4.3.1.

2.3.1 Volatility of endowment

In Figure 1 we plot the ergodic mean7 of welfare for the BHH, UHH, and the ag-
gregate household8 against increasing values of the aggregate endowment shock, εTt .
We show that allowing the households to have access to an additional instrument
of payment and saving is associated with a welfare improvement. Being banked is
associated with higher welfare, as it allows the smoothing of consumption through
the Euler equation for deposits.

To further illustrate the difference between banked and unbanked households,
we observe in Figure 1 that banked households are approximately 2.5% better-off
than unbanked households for an endowment shock of 10%. The main difference is
that the former have access to deposits, an efficient saving vehicle that allows banked
households to smooth their consumption in response to the endowment shock. Thus,

6. Not making this adjustment would distort welfare comparisons, artificially increasing or de-
creasing welfare due to the holdings of DC for the BHH.

7. To clarify, we take a second-order approximation about the deterministic steady state, subject
the economy to our specified shocks, and then simulate the model for 2,000 periods to obtain the
mean value of the variables of interest. The ergodic mean is sometimes referred to as the “stochastic
steady state”.

8. We adjust the population proportion of the representative BHH and UHH when constructing
aggregate variables.
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providing the unbanked with additional savings vehicle can be welfare improving.

Figure 1: Welfare effects of aggregate endowment shock
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2.3.2 Constant rate and constant spread rules

We conduct a welfare exercise across the two regimes with respect to policy rules
governing the CBDC rate, RDC , in Figure 2. We use two policy rules for RDC

t , a
constant rate and constant spread rule, as shown in Equations (14a) and (14b). In
our welfare simulations, we note that the steady state value of RDC

t is bounded by:9

RDC < 1 +
1− β

β + ηhDC

(16)

This relationship guarantees the existence of a steady state in the model and thus
enforces a lower bound on the rate and the spread of DC. CBDC rates offer a
convenience yield relative to deposit rates as there are non-pecuniary motives for
holding CBDC in our model. In particular, CBDCs are a hybrid between money
and deposits; like money they are legal tender and provide liquidity services, and

9. For full details please refer to the Appendix A.2.4.
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like deposits they offer a rate of return.
In Figure 2 we plot the relative welfare gains under digital currency for both the

constant spread and fixed CBDC rate rule. Introducing digital currency is welfare
improving under both interest rate rules. It is worth mentioning, however, that
the constant spread rule in equation (14b) is slightly less welfare improving. This
simple setup illustrates that adopting digital currency is welfare improving as it
provides an additional savings instruments for the UHH and allows them to smooth
consumption through the Euler equation for digital currency holdings. Introducing
digital currency is, however, welfare improving only when it is remunerated with a
positive rate of return, thus rendering digital currency holdings superior as a savings
vehicle to real money balances. We refer to this as a savings channel and document
its effects in our models with a banking sector and monetary policy.

Figure 2: Welfare effects of introducing digital currency
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Note: rDC is the net nominal interest rate on digital currencies, DC.
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3 Monetary model with banking sector
In this section, we extend the model presented in Section 2 in two ways: i) the
introduction of a banking sector accompanied with credit frictions; and ii) a supply
side of the economy due to physical capital and production. We adopt the setup
of Gertler and Karadi (2011), introducing a third type of agent – bankers – which
allows us to maintain a representative setup of the household sector. In this setup,
banked households hold claims on deposits – denominated in both fiat currency
and digital currency – which are held at banks, and they may also directly invest
in firms by purchasing equity holdings. Unbanked households are still limited to
money holdings and digital currencies; the latter of which are also deposited into
the banking sector. Banks then convert deposits into credit, facilitating loans to
firms who acquire capital for the means of production, as in Gertler and Kiyotaki
(2010, 2015).

We adopt this setup to study welfare implications of different digital currency
regimes. The baseline specification that we detail in this section represents a indirect
retail CBDC design. By indirect retail regime, we mean that digital currency is
stored with banks and, thus, appears on their balance sheets, as described above.
We also look into a direct retail CBDC regime, when households store their digital
currency with a central bank and, thus, their balances do not appear on commercial
banks’ balance sheets. We compare welfare implications of direct and indirect CBDC
designs to the setup where households do not have access to digital currency.

3.1 Production

The supply side of the economy is simple. Final goods are produced by perfectly
competitive firms that use labor and capital to produce their output. They also
have access to bank loans, and conditional on being able to take out loan, they do
not face any financial frictions. These firms pay back the crediting banks in full
via profits. Meanwhile, capital goods are produced by perfectly competitive firms,
which are owned by the collective household.

3.1.1 Final good firms

Let there be a continuum of competitive firms which produce final goods, Yt, from
aggregate labor, Lt, and capital, Kt, according to a constant returns to scale (CRTS)
production technology:

Yt = AtK
α
t−1L

1−α
t , (17)
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where At is total factor productivity (TFP) which follows a stationary AR(1) pro-
cess, and α is the capital share of output. As is standard, the marginal products of
output with respect to available capital and aggregate labor supply determine the
real rental rate of capital, zkt , and the real wage, wt, respectively:

zkt = α
Yt
Kt−1

, (18)

wt = (1− α)
Yt
Lt

. (19)

3.1.2 Capital good firms

We assume that capital goods are produced by perfectly competitive firms, and that
the aggregate capital stock grows according to the following law of motion:

Kt = It + (1− δ)Kt−1, (20)

where It is investment and δ ∈ (0, 1) is the depreciation rate.
The objective of the capital good producing firm is to choose It to maximize

revenue, QtIt. Thus, the representative capital good producing firm’s objective
function is:

max
It

QtIt − It − Φ

(
It
Ī

)
It,

where Φ(·) are investment adjustment costs as in Christiano, Eichenbaum, and Evans
(2005), and are defined as:

Φ

(
It
Ī

)
=
κI
2

(
It
Ī
− 1

)2

,

with Φ(1) = Φ′(1) = 0 and Φ′′(·) > 0. The investment adjustment cost parameter,
κI = Φ′′(1) is chosen so that the price elasticity of investment is consistent with
instrumental variable estimates in Eberly (1997).

Differentiating the objective function with respect to It gives the FOC:

Qt = 1 + Φ

(
It
Ī

)
+

(
It
Ī

)
Φ′

(
It
Ī

)
. (21)

3.2 Households and workers

The representative household now contains a continuum of individuals, normalized
to 1, each of which are of type i ∈ {b, h, u}. The setup follows Murakami and
Viswanath-Natraj (2021). Bankers (i = b) and BHH workers share a perfect insur-

12



ance scheme, such that they each consume the same amount of real output. However,
UHH workers are not part of this insurance scheme, and so their consumption vol-
umes are different from bankers and workers. As before, we define Γ as a proportion
of BHH and bankers, hence BHH and bankers are indexed on the continuum [0,Γ],
whereas the unbanked are indexed on [Γ, 1]. Much of the setup in Section 2.2 carries
over to this section. In what follows, we highlight the key differences introduced in
this section.

We endogenize labor supply decisions on the part of households, and so the BHH
maximize the present value discounted sum of utility, based on the following utility
function:

U(Ch
t , DC

h
t , L

h
t ) =

(Ch
t )

1−σ

1− σ
− ζ0

(Lh
t )

1+ζ

1 + ζ
+ ηhDC ln(DCh

t ), (22)

subject to their budget constraint:

Ch
t +Dt +QtK

h
t +DCh

t + χh
t

= wtL
h
t +Πt + (zkt + (1− δ)Qt)K

h
t−1 +

Rt−1Dt−1 +RDC
t−1DC

h
t−1

πt
,

(23)

where wt are real wages, Li
t, i ∈ {h, u}, is labor supply, ζ is the inverse-Frisch

elasticity of labor supply, ζ0 is a relative labor supply parameter, Kh
t are equity

holdings in firms by the BHH, χh
t are the costs of equity acquisitions incurred by

the BHH, Qt is the price of equity/capital, and Πt are distribution of profits due to
the ownership of banks and firms. We also note that Λh

t,t+1 is the BHH stochastic
discount factor (SDF):

Λh
t,t+1 ≡ βEt

[(
Ch

t+1

Ch
t

)−σ
]
. (24)

For a complete list of FOCs for the BHH problem see Appendix A.3.1.
One distinction between the BHH and bankers purchasing equity in firms is the

assumption that the BHH pays an efficiency cost when it adjusts its equity holdings.
We assume the following functional form for χh

t :

χh
t =

κh

2

(
Kh

t

Kt

)2

ΓKt. (25)

Meanwhile, the UHH maximizes the present discounted sum of per-period utili-
ties given by

U(Cu
t , L

u
t ) =

(Cu
t )

1−σ

1− σ
− ζ0

(Lu
t )

1+ζ

1 + ζ
, (26)
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subject to its budget constraint,

Cu
t +Mt +DCu

t + χM
t = wtL

u
t +

Mt−1 +RDC
t−1DC

u
t−1

πt
, (27)

and the CIA constraint, (13).

3.3 Bankers and the finance sector

Among the population of bankers, each j-th banker owns and operates her own
bank. A banker will facilitate financial services between households and firms by
providing loans to firms in the form of equity, kbt , funded by domestic deposits, dt,
and digital currencies deposits, dct, and her own net worth, nt. However, financial
frictions may limit the ability of the banker to raise deposits from households.

To this end, each banker seeks to accumulate retained earnings to funds its
investments. To maintain model tractability, in each period, bankers have a fixed
probability of moving in and out of the financial sector. Let σb denote the probability
that a banker remains as a banker in the following period, with complementary
probability 1 − σb that she retires. This implies an expected franchise life of an
individual bank of 1

1−σb
. Furthermore, the number of bankers exiting the financial

market is matched by the number of new bankers entering.
New bankers start up their franchise with fraction γb of total assets of the banked

households. Upon retirement, a banker will exit with her net worth, bringing the
balance back to the household in the form of a dividend. Therefore, a banker will
seek to maximize her franchise value, Vb

t , which is the expected present discount
value of future dividends:

Vb
t = Et

[
∞∑
s=1

Λh
t,t+sσ

s−1
b (1− σb)nt+s

]
, (28)

where nt+s is the net worth of the bank when the banker retires at date t + s with
probability σs−1

b (1 − σb). Thus, a banker will choose quantities kbt , dt, and dct to
maximize expression (28).10

10. Note that we make the simplifying assumption that each individual banker exogenously ac-
cepts digital currency deposits, dct, directly in proportion to the population of bankers and total
digital currency holdings. In other words, in aggregate, the total sum of individual digital currency
deposits at each j-th bank, dct(j), is equal to aggregate digital currency deposits, DCt:

∞∑
j=1

dct(j) = DCt.
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A financial friction inline with Gertler and Kiyotaki (2010) is used to limit the
banker’s ability to raise funds, whereby the banker faces a moral hazard problem:
the banker can either abscond with the funds she has raised from depositors, or
the banker can operate honestly and pay out her obligations. Absconding is costly,
however, and so the banker can only divert a fraction, Θ(·), of assets she has accu-
mulated:

Θ(xt) =
θb0

exp (θbxt)
, (29)

where we assume that {θb0, θb} > 0, and we define xt as a banker’s digital currency
deposit leverage ratio:

xt =
dct
Qtkbt

, (30)

Thus, following Gertler and Kiyotaki (2010), we assume that as the banker raises a
greater proportion of her funds from digital currency deposits, she can only abscond
a smaller proportion of her assets. This assumption is supported by the potential for
CBDCs to make payments more secure and a reduction in fraud, with more oversight
from regulators and the central bank on all transactions of digital currency.11

The caveat to absconding, in addition to only being able to take a fraction of
assets away, is that it takes time – i.e. it take a full period for the banker to abscond.
Thus, the banker must decide to abscond in period t, in addition to announcing what
value of dt she will choose, prior to realizing next period’s rental rate of capital. If a
banker chooses to abscond in period t, its creditors will force the bank to shutdown
in period t+ 1, causing the banker’s franchise value to become zero.

Therefore, the banker will choose to abscond in period t if and only if the return
to absconding is greater than the franchise value of the bank at the end of period t,
Vb

t . It is assumed that the depositors act rationally, and that no rational depositor
will supply funds to the bank if she clearly has an incentive to abscond.12 In other

11. Refer to a Bank of England report for more details on the benefits of digitial currencies,
https://www.ukfinance.org.uk/system/files/CBDC-report-FINAL.pdf

12. Consider a simple Gertler and Kiyotaki (2010) setup absent of inflation. Recall that the
banker seeks to maximize profits and that it will choose to abscond if and only if:

Rk(d+ n)−Rd︸ ︷︷ ︸
Profit from operating honestly

< ΘRk(d+ n).︸ ︷︷ ︸
Absconding payoff

If the banker wants to abscond, she will set her demand for deposits such that the above inequality
holds, or,

R >
(1−Θ)Rk(d+ n)

d
.

In other words, if a banker signaled that she intended to default, then the return that the worker
would receive from depositing with other banks would be greater than the return they would earn
by depositing with the absconding banker. Therefore, an absconding banker would receive no
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words, the bankers face the following incentive constraint:

Vb
t ≥ Θ(xt)Qtk

b
t , (31)

where we assume that the banker will not abscond in the case of the constraint
holding with equality.

3.3.1 Bank balance sheet

Table 1 represents the balance sheet of a typical banker, and so we can write the
following balance sheet constraint that the banker faces:(

1 +
κb

2
x2t

)
Qtk

b
t = dt + dct + nt, (32)

where we assume that the banker faces an efficiency cost from taking in digital
currency deposits:

χb
t =

κb

2
x2tQtk

b
t . (33)

Assets Liabilities + Equity
Loans Qtk

b
t Deposits dt

Management costs χb
t Digital currency deposits dct

Net worth nt

Table 1: Bank balance sheet

Additionally, we can write the flow of funds constraint for a banker as

nt = [zkt + (1− δ)Qt]k
b
t−1 −

Rt−1

πt
dt−1 −

RDC
t−1

πt
dct−1, (34)

noting that for the case of a new banker, the net worth is the startup fund given by
the household:

nt = γb[z
k
t + (1− δ)Qt]kt−1

3.3.2 Rewriting the banker’s problem

With the constraints of the banker established, we can proceed to write the banker’s
problem as:

max
kt,dt

Vb
t = Et

[
Λh

t,t+1

{
(1− σb)nt+1 + σbVb

t+1

}]
,

deposits, and so an optimizing banker would not choose to abscond.
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subject to the incentive constraint (31) and the balance sheet constraint (32).
Since Vb

t is the franchise value of the bank, which we can interpret as a “market
value”, we can divide Vb

t by the bank’s net worth to obtain a Tobin’s Q ratio for the
bank denoted by ψt:

ψt ≡
Vb

t

nt

= Et

[
Λh

t,t+1(1− σb + σbψt+1)
nt+1

nt

]
. (35)

We then define ϕt as the maximum feasible asset to net worth ratio, or, rather,
the leverage ratio of a bank:

ϕt =
Qtk

b
t

nt

. (36)

Additionally, if we define Ωt,t+1 as the stochastic discount factor of the banker, µt as
the excess return on capital over fiat currency deposits, µDC

t as the cost advantage
of digital currency deposits over fiat currency deposits, and υt as the marginal cost
of deposits, we can write the banker’s problem as the following:

ψt = max
ϕt

{
µtϕt +

(
1− κb

2
x2tϕt

)
υt + µDC

t xtϕt

}
, (37)

subject to
ψt ≥ Θ(xt)ϕt. (38)

Solving this problem yields:

ϕt =
υt

Θ(xt)− µt − µDC
t xt +

κb

2
x2tυt

, (39)

where:

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

}]
, (40)

µDC
t = Et

[
Ωt,t+1

{
Rt

πt+1

− RDC
t

πt+1

}]
, (41)

υt = Et

[
Ωt,t+1

Rt

πt+1

]
, (42)

Ωt,t+1 = Λh
t,t+1(1− σb + σbψt+1). (43)

For the complete solution of the banker, please refer to Appendix A.3.2 and A.3.3.
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3.4 Market equilibrium

Aggregate consumption, labor supply, and digital currency holdings by the BHH
and UHH are given as:

Ct = ΓCh
t + (1− Γ)Cu

t , (44)

L̄ = ΓL̄h + (1− Γ)L̄u, (45)

DCt = ΓDCh
t + (1− Γ)DCu

t . (46)

The aggregate resource constraint of the economy is:

Yt = Ct +

[
1 + Φ

(
It
Ī

)]
It + Γχh

t + (1− Γ)χM
t + Γχb

t , (47)

with aggregate capital being given by:

Kt = Γ(Kh
t +Kb

t ). (48)

Aggregate net worth of the bank is given by:

Nt = σb

[
(zkt + (1− δ)Qt)K

b
t−1 −

Rt−1

πt
Dt−1 −

RDC
t−1

πt

DCt−1

Γ

]
+ γb(z

k
t + (1− δ)Qt)

Kt−1

Γ
,

(49)

and the aggregate balance sheet of the bank is given by the following equations:

QtK
b
t = ϕtNt, (50)

QtK
b
t

(
1 +

κb

2
x2t

)
= Dt +

DCt

Γ
+Nt, (51)

xt =
DCt

QtΓKb
t

. (52)

3.5 Quantitative experiments

We explore the efficiency of bank intermediation in this section. The ability of banks
to efficiently provide capital to producers explains the welfare difference between the
direct and indirect CBDC designs. A direct retail distribution means that digital
currency is distributed directly by the central bank to households. Therefore this
dis-intermediates the bank. The retail digital currency regime implies that all the
digital currency holdings are stored with a central bank, but not with a commercial
bank. The regime under which digital currency is not present in the economy is
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straightforward. It implies that BHH save only in the form of deposit claims Dt

and hold equity Kh
t , while the UHH only operate real money balances Mt as their

savings vehicle.

3.5.1 Steady state

To illustrate the differences between the direct and indirect retail CBDCs, we start
with the steady state implications in Figure 3. We observe that in steady state the
banker has higher leverage, ϕ, and higher net worth, N in an indirect CBDC design.
Mathematically, we can see that the optimal leverage of the banker is increasing in
the share of digital currency deposits x in Equation (30). That directly translates
into bankers’ ability to finance higher steady state values of capital. We also see
that deposits, Dt, that banks use to finance equity, are lower under indirect retail
than under both direct retail and no CBDC regimes, but are compensated through
digital currency holdings on the bank balance sheet. The differences in steady state
leverage, net worth and capital is important in understanding the welfare effects on
households.

Figure 3: Steady state implications of CBDC regimes
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3.5.2 Impulse responses

Figure 4 presents impulse response functions with respect to a one-standard devia-
tion (1%) TFP shock. We compare an indirect retail CBDC to the economy with no
digital currency. The output are stronger in the regime with digital currency, and
is strongest for the indirect retail CBDC. This is because of the general equilibrium
effects of digital currency deposits on the bank balance sheet increasing net worth,
leverage and capital supplied in production. Stronger consumption responses in the
indirect retail regime is due to wealth effects of an increase in production.

Figure 4: IRFs to 1% TFP shock, indirect retail and no CBDC regimes
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3.5.3 Welfare comparisons

We evaluate welfare implications of two digital currency regimes: a direct and in-
direct retail CBDC relative to a model with no digital currency in Figure 5.13 We
calculate welfare with respect to a 1% TFP shock with persistence ρA = 0.9, chang-
ing the proportion of BHH, Γ, in the economy under the constant spread rule for
digital currency in Equation (14b). We observe that direct and indirect digital
currency regimes dominate the no CBDC regime for UHH.

We attribute the positive welfare benefits of a retail CBDC to the savings chan-
nel. The retail CBDC allows UHH to use a savings vehicle that remunerates them
and, thus, allows them to increase consumption relative to the economy with no
digital currency. This explains the welfare improvements associated with adopting
digital currency. As the savings channel mainly concerns the unbanked, its welfare
improving effects dissipate when the share of the unbanked decreases. The difference
between the direct and indirect retail CBDC depends on the financial intermedia-
tion channel. An indirect CBDC is welfare enhancing as digital currency deposits
increase the bank’s net worth and leverage. This translates to increased lending to
firms, higher capital and production, and increased consumption through general
equilibrium effects. Therefore the indirect retail CBDC is a preferred system in our
setup.

The BHH, however, achieve net welfare losses with CBDCs. Our hypothesis is
that the CBDCs introduces an amplification of the consumption response and bank
balance sheets to productivity shocks. This amplification leads to excess volatility
relative to the no-CBDC regime, and is higher when Γ is low and the economy is
primarily populated by unbanked households. On the other hand, BHH do not gain
from either the savings or financial intermediation channel relative to the no-CBDC
regime, as they already have an efficient savings vehicle.

Turning to the aggregate household, we find there are net welfare benefits relative
to the no-CBDC regime when Γ is very low, so the economy is primarily unbanked,
or when Γ is very high and approaches 1. When Γ is low this corresponds to the
case when the savings and financial intermediation channels dominate for UHH and
the gains from financial inclusion are strongest. When Γ is very high, there are still
net benefits to the unbanked, and the welfare losses for BHH due to excess volatility
from the introduction of the retail CBDC is minimal.

13. Note that we once again suppress the role of DC in the BHH utility function in order to make
fairer welfare comparisons.
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Figure 5: Welfare implications of different DC regimes, constant spread rule
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3.5.4 CBDC rules: constant versus spread

Figure 6 presents impulse response functions with respect to a one-standard devia-
tion TFP shock. For a indirect retail CBDC economy, we compare a fixed CBDC
rate rule and a constant spread rule. The output effects are similar under both pol-
icy rules, however the main differences are in the response of deposits. Commercial
bank and digital currency deposits are higher for the fixed rate rule. Deposit rates
fall more with a fixed rate rule, and consumption is slightly more responsive.
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Figure 6: IRFs to 1% TFP shock, indirect retail CBDC design
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The welfare comparison across the two rules is provided in Figure 7. We assume
Γ = 0.5. Comparing the constant spread and fixed rate rules, we note that the
constant rate rule does not provide welfare improvements. One can notice that
while under constant spread rule the welfare improvements are positive for small
values of the spread, the constant rate rule is never welfare improving. Negative
digital currency rates are better than the positive ones in terms of welfare.

These findings can be explained by two factors. Firstly, setting a constant rate
on digital currency is akin to a passive response to exogenous disturbances. In other
words, the constant rate rule amplifies the TFP shock and, thus, decreases ergodic
mean of welfare. The constant rate rule implies inefficient movements of digital
currency holdings of BHH; as the deposit rate decreases, with digital currency rate
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staying constant, the BHH are incentivized to hold inefficiently higher amounts of
digital currency. This explains welfare losses in both digital currencies. Secondly,
the lower the rate on digital currency, the less the households are incentivized to hold
it, attenuating the channel related to the inefficient digital currency accumulation.
This explains why a constant negative rate implies higher welfare than a positive
rate for the constant rate rule in Figure 7. As the constant rate rule is not welfare
improving for any feasible values of RDC , we abstract from it further in the paper
and only explore the constant spread rule when extending the model to include
monetary policy.

Figure 7: Welfare implications of different CBDC designs
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4 Two-agent New Keynesian model with digital
currency holdings

In this section, we introduce price stickiness and monopolistic competition (Chris-
tiano, Eichenbaum, and Evans 2005; Smets and Wouters 2007; Galí 2015) to build
a two-agent New Keynesian (TANK) model. Much of the setup is inherited from
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Section 3, and here we highlight key additions to the model.

4.1 Production

4.1.1 Final goods producer

There is a representative competitive final good producing firm which aggregates a
continuum of differentiated intermediate inputs according to a Dixit-Stiglitz aggre-
gator:

Yt =

(∫ 1

0

Yt(j)
ϵ−1
ϵ dj

) ϵ
ϵ−1

, ϵ > 0. (53)

So final good firms maximize their profits by selecting how much of each intermediate
good to purchase, and so their problem is:

max
Yt(j)

PtYt −
∫ 1

0

PtYt(j)dj.

Solving for the FOC for a typical intermediate good j is:

Yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt. (54)

The relative demand for intermediate good j is dependent of j’s relative price with
ϵ, the price elasticity of demand, and is proportional to aggregate output, Yt.

From Blanchard and Kiyotaki (1987), we can derive a price index for the aggre-
gate economy:

PtYt ≡
∫ 1

0

Pt(j)Yt(j)dj.

Then, plugging in the demand for good j from (54) we have:

Pt =

(∫ 1

0

Pt(j)
1−ϵdj

) 1
1−ϵ

.

4.1.2 Intermediate goods producers

The continuum of intermediate good producers are normalized to have a mass of
unity. A typical intermediate firm j produces output according to a CRTS technol-
ogy in capital and labor with a common productivity shock:

Yt(j) = AtKt−1(j)
αLt(j)

1−α.
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The problem for the j-th firm is to minimize costs,

min
Kt−1(j),Lt(j)

zktKt−1(j) +WtLt(j),

subject to their production constraint:

AtKt−1(j)
αLt(j)

1−α ≥ Yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt.

This yields the minimized unit cost of production:

MCt =
1

At

(
zkt
α

)α (
wt

1− α

)1−α

. (55)

The price-setting problem of firm j is set up à la Calvo (1983). Price stickiness
arises from the fact that a producer is not able to adjust prices in the next period
with probability θ; and is able to with complimentary probability 1−θ. The producer
maximizes its expected discounted14 value of profits:

max
Pt(j)

Et

[
∞∑
s=0

Λh
t,t+sθ

s

{
(1− τ)

Pt(j)

Pt+s

Yt+s(j)−MCt+sYt+s(j)

}]
,

where τ is a lump-sum subsidy to offset distortions to the steady state arising from
monopolistic competition, the producer markup, M = ϵ

ϵ−1
> 1. From the interme-

diate firm’s pricing problem, we attain expressions for price dispersion, ∆t:

∆t = θπϵ
t∆t−1 + (1− θ)

(
x1,t
x2,t

)−ϵ

, (56)

and inflation dynamics:
π1−ϵ
t = θ + (1− θ)(π#

t )
1−ϵ, (57)

where we define the reset price inflation, π#
t ,

π#
t =

M
(1− τ)

x1,t
x2,t

πt, (58)

and the auxiliary variables, x1,t and x2,t:

x1,t = Yt(C
h
t )

−σMCt + θEtΛ
h
t,t+1π

ϵ
t+1x1,t+1, (59)

x2,t = Yt(C
h
t )

−σ + θEtΛ
h
t,t+1π

ϵ−1
t+1x2,t+1. (60)

14. Note that the firm is owned by the BHH and thus uses the SDF Λh
t,t+1.
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Finally, using the production function for each intermediate firm, we have the ag-
gregate resource constraint:

Yt =
AtK

α
t−1L

1−α
t

∆t

(61)

4.1.3 Efficient steady state and resulting targeting rule

As noted above, there is a distortion arising from monopolistic competition in pro-
duction. We use lump-sum subsidy to offset the distortion. We assume that a policy
maker can use lump-sum taxes to pay for a lump sum subsidy τ in steady state. It
is worth noting, however, that the policy maker in our setup is not able to use taxes
and/our subsidies as policy instruments out of steady state.

From equation (58), we see that the policy maker chooses subsidy such that

M
(1− τ)

= 1 =⇒ τ = − 1

ϵ− 1

which guarantees a non-distorted steady-state. This is crucial for the optimal
simple rules experiments that follow. An efficient level of steady state output implies
that the policymaker chooses to target welfare relevant output gap, which is the ratio
of realized output Yt and flexible price output Y f

t . Hereinafter, we abstract from
distorted steady-state and only consider the efficient one.

4.2 Monetary policy

The central bank is assumed to operate an inertial Taylor Rule:

Rt

R̄
=

(
Rt−1

R̄

)ρR (
πϕπ
t XϕY

t

)1−ρR
exp(εRt ) (62)

where it reacts to inflation and the output gap, Xt, which we define as:

Xt =
Yt

Y f
t

, (63)

where Y f
t is the flexible price level of output. Finally, εRt an exogenous and transitory

monetary policy shock.

4.3 Quantitative experiments

4.3.1 Parameterisation and steady state values
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Table 2: Model parameter values

Parameter Value Description

θ 0.100 Elasticity of leverage wrt foreign borrowing
θ0 0.401 Severity of bank moral hazard
σ 0.940 Survival probability
γb 0.0045 Fraction of total assets inherited by new banks
κb 0.000 Management cost for DC
β 0.990 Discount rate
σ 2.000 Risk aversion
ζ 0.333 Inverse-Frisch elasticity
ζ0 7.883 Inverse labour supply capacity
ηhDC 0.001 BHH preference for DC
κh 0.020 Cost parameter of direct finance
Γ 0.500 Proportion of BHH
γ 0.800 CIA weight on money
ϕM 10.000 Money adjustment cost parameter
α 0.333 Capital share of output
δ 0.025 Depreciation rate
ϵ 9.000 Elasticity of demand
κI 0.667 Investment adjustment cost
Ā 1.000 Steady state TFP
ī 0.010 Steady state net nominal interest rate
π̄ 0.000 Steady state net inflation
θ 0.750 Calvo parameter
τ 0.111 Producer subsidy
M 1.125 Intermediate producer markup
∆R 0.005 Spread on deposits and DC
ϕπ 1.500 Taylor rule inflation coefficient
ϕY 0.500 Taylor rule output coefficient
ρA 0.850 AR(1) coefficient for TFP shock
ρR 0.900 Taylor rule persistence
σA 0.01 Standard deviation of TFP shock
σR 0.0025 Standard deviation of MP shock
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4.3.2 Equilibrium dynamics of the TANK model with CBDCs

We illustrate the dynamics of the model with respect to a TFP shock and a mon-
etary policy shock under a conventional Taylor Rule and the two digital currency
rate rules. Figure 8 plots the results in response to a one-standard deviation TFP
shock. Relative to the no-CBDC regime, an expansionary productivity shock has
stronger effects on consumption, the output gap and bank balance sheets. The in-
tuition is as follows. The DC gives unbanked households a savings vehicle. This
enables the UHH to save more following the productivity shock, which leads to an
accumulation of digital currency deposits. This enables higher consumption for the
unbanked households over a longer period, even though the contemporaneous ef-
fect on consumption is stronger for the no-CBDC case. The ability of the bank to
raise digital currency deposits increases the net worth of the bank. Asset prices are
higher and the bank invests in more capital relative to the regime with no-CBDC.
In summary, the introduction of a retail CBDC leads to an amplification of the
productivity shock for consumption, the net worth and lending of banks.

Figure 9 presents results in response to a 25 basis point monetary policy shock.
Relative to the no-CBDC regime, a contractionary monetary policy shock now trans-
mits to UHH. We see strong pass-through to UHH consumption, with small effects
in the no-CBDC regime. The consumption response for UHH translates to stronger
transmission to aggregate consumption and the output gap. The differences between
the indirect and direct retail CBDC are negligible, and only affect the banking vari-
ables, in particular the digital currency deposits now appear on the bank balance
sheet. However, it does not materially affect the responses of bank leverage, net
worth and lending across the two retail CBDCs.

Comparing banking responses of a retail CBDC to the no CBDC case, we find
the transmission to banking variables is muted with a retail CBDC. This is intuitive:
the monetary shock transmits to bank balance sheets through changing the cost of
bank deposits, which in turn affects the leverage and net worth directly in the no
CBDC case. In a retail CBDC model, the share of bank deposit share reduces. This
reduces the sensitivity of the bank balance sheet to monetary shocks. However,
while the effect on bank is attenuated with a retail CBDC, the savings channel of
the CBDC means the consumption response of the UHH dominate. In summary,
monetary policy transmission to consumption is strengthened, and transmission to
bank balance sheets is attenuated with a retail CBDC.
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Figure 8: IRFs to 1% TFP shock under constant spread rule

10 20 30 40

-1.5

-1

-0.5

0

RI

RD

No DC

10 20 30 40

0

0.5

1
Q

10 20 30 40

0.2

0.4

0.6

0.8

1
R

10 20 30 40

0.4

0.6

0.8

1
R

DC

10 20 30 40

-0.2

-0.15

-0.1

-0.05

0

X

10 20 30 40

0

0.1

0.2

0.3

0.4
C

10 20 30 40

0

0.2

0.4

0.6
C

h

10 20 30 40

0

0.1

0.2

0.3

0.4
C

u

10 20 30 40

0

0.1

0.2

0.3

0.4
DC

10 20 30 40

0

5

10
10

-3 DC
h

10 20 30 40

-0.5

0

0.5

DC
u

10 20 30 40

0

0.5

1
D

10 20 30 40

-0.6

-0.4

-0.2

0
K

10 20 30 40

0

0.5

1
K

b

10 20 30 40

-1.5

-1

-0.5

0
x

10 20 30 40

0

0.5

1
N

10 20 30 40

-0.4

-0.2

0

0.2

10 20 30 40

-0.4

-0.2

0

0.2

10 20 30 40

-0.3

-0.2

-0.1

0

0.1

10 20 30 40

0

2

4

6

Note: IRFs show percent deviations from steady state values, except for inflation
and interest rates which show annualized net rates.
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Figure 9: IRFs to 25 b.p. monetary policy shock under constant spread rule
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Note: IRFs show percent deviations from steady state values, except for inflation
and interest rates which show annualized net rates.

4.3.3 Welfare analysis and optimal policy

We conduct an optimal policy exercise across the three setups (direct retail, indirect
retail and no-CBDC) and two digital currency rate policy regimes (constant spread
and constant rate rules) under an instrumental monetary policy rule of the form:

πtX
ϕY
t = 1, (64)
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where here ϕY determines the degree to which the policy maker cares about stabi-
lizing the welfare relevant output gap. This rule implies strict inflation targeting if
ϕY = 0, which turns out to be optimal for all setups and digital currency rules.

We evaluate welfare implications of the direct and indirect retail CBDC relative
to a model with no digital currency in Figure 10. We calculate welfare with respect
to a one-standard deviation TFP shock with persistence ρA = 0.9 and a one-standard
deviation monetary shock of 25 basis points.

Similar to our RBC setup in Section 3, the UHH have lower levels of financial
inclusion and have a stronger incentive to adopt a retail CBDC. This reflects the
savings channel. As the CBDC offers a rate of remuneration, it is an effective sav-
ings vehicle for the unbanked and enables them to achieve welfare gains through
smoothing consumption. Comparing the two types of retail CBDC, we note that
the indirect retail CBDC dominates. The gains of an indirect retail CBDC are larger
when the unbanked population is larger: this is because of the financial interme-
diation channel. As the unbanked population now hold digital currency deposits
through a bank, this increases the bank net worth relative to a direct retail CBDC.
The bank is able to lend more to firms, increasing production and consumption
through general equilibrium effects.

The BHH, however, achieve net welfare losses with a retail CBDC. Our hypoth-
esis is that a retail CBDC introduces an amplification of the consumption response
and bank balance sheets to both productivity and monetary policy shocks. This am-
plification leads to excess volatility relative to the no-CBDC regime, and is higher
when Γ is low and the economy is primarily populated by unbanked households. On
the other hand, the BHH does not gain from either the savings or financial interme-
diation channel relative to the no-CBDC regime, as they already have an efficient
savings vehicle. Turning to aggregate household, we find there are net welfare bene-
fits relative to the no-CBDC regime when Γ is very low, so the economy is primarily
unbanked, or when Γ is very high and approaches 1. When Γ is low this corresponds
to the case when the savings and financial intermediation channels dominate for the
UHH and the gains from financial inclusion are strongest. When Γ is very high,
there are still net benefits to the unbanked, and the welfare losses for BHH due to
excess volatility from the introduction of the retail CBDC is minimal.
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Figure 10: Welfare comparison across regimes
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5 Conclusion
In this paper we focus on the financial inclusion effects of introducing a digital
currency. We address a number of research questions on the welfare implications of a
retail CBDC design, such as whether it is a direct claim on a central bank or whether
it is facilitated through commercial banks, whether interest rates are adjustable or
fixed, and on the strength of monetary policy transmission after digital currency
adoption.

In the first part we review the arguments for and against a retail CBDC using
a simple endowment economy with two types of agents. Welfare for both sets of
households improve with a retail CBDC provided the interest rate on CBDC is
positive. However negative rates can lead to potential net welfare losses.

We then extend the model to examine the macroeconomic effects of issuing a
digital currency when there is a financial intermediary and production. This allows
us to evaluate the relative benefits of a direct or indirect retail design. Our results
show that a indirect retail system is the “first-best” design, with the welfare of
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an indirect retail CBDC strictly dominating the direct retail CBDC regime in our
baseline calibration. Conducting a sensitivity analysis with respect to the share
of the banked population, we find the net benefit to a retail CBDC is stronger
for unbanked households. This is consistent with the savings channel: unbanked
households now have access to an asset that remunerates a rate of return and assists
in consumption smoothing. Second, the unbanked households strictly prefer an
indirect retail CBDC. This is because they gain from a financial intermediation
channel through facilitating an increase in the deposits and net worth of the bank.

Finally we evaluate monetary policy rules in a New Keynesian setup, and de-
termine the magnitude of monetary policy transmission for each CBDC design.
Our results suggest that the introduction of retail CBDC amplifies monetary policy
transmission to consumption. This is because the unbanked households now hold
digital currency deposits and are sensitive to the central bank rate. Comparing all
regimes under strict inflation targeting, we find an indirect retail design has the
highest welfare in an economy populated primarily by unbanked households. Taken
together, our findings suggest the greatest use case for retail CBDCs lies in emerging
markets with low levels of financial inclusion.

34



References
Agur, Itai, Anil Ari, and Giovanni Dell’Ariccia. 2022. “Designing central

bank digital currencies.” Journal of Monetary Economics 125:62–79.

Andolfatto, David. 2021. “Assessing the impact of central bank digital currency
on private banks.” The Economic Journal 131 (634): 525–540.

Auer, Raphael, and Rainer Böhme. 2020. “The technology of retail central
bank digital currency.” BIS Quarterly Review, March.

Benigno, Pierpaolo. 2019. “Monetary Policy in a World of Cryptocurrencies.”
Centre of Economic Policy Research, discussion papers.

Benigno, Pierpaolo, Linda M. Schilling, and Harald Uhlig. 2022. “Cryp-
tocurrencies, Currency Competition, and the Impossible Trinity.” Journal of
International Economics, 103601.

Blanchard, Olivier J., and Nobuhiro Kiyotaki. 1987. “Monopolistic Compeiti-
tion and the Effects of Aggregate Demand.” American Economic Review 77 (4):
647–666.

Calvo, Guillermo A. 1983. “Staggered Prices in a Utility-Maximising Framework.”
Journal of Monetary Economics 12 (3): 383–398.

Chiu, Jonathan, Seyed Mohammadreza Davoodalhosseini, Janet Hua Jiang,
and Yu Zhu. 2019. “Bank market power and central bank digital currency:
Theory and quantitative assessment.” Available at SSRN 3331135.

Christiano, Lawrence J., Martin S. Eichenbaum, and Charles L. Evans.
2005. “Nominal Rigidities and the Dynamic Effects of a Shock to Monetary
Policy.” Journal of Political Economy 113 (1): 1–45.

Cong, Lin William, and Simon Mayer. 2021. “The Coming Battle of Digital
Currencies.” Available at SSRN 3992815, https://papers.ssrn.com/sol3/papers
.cfm?abstract_id=4068564.

Debortoli, Davide, and Jordi Galí. 2017. “Monetary Policy with Heterogeneous
Agents: Insights from TANK Models.” Department of Economics and Business,
Universitat Pompeu Fabra, Economics Working Papers, no. 1686.

Eberly, Janice C. 1997. “International Evidence on Investment and Fundamen-
tals.” European Economic Review 41 (6): 1055–1078.

35

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4068564
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4068564


Fernández-Villaverde, Jesús, Daniel Sanches, Linda Schilling, and Harald
Uhlig. 2021. “Central bank digital currency: Central banking for all?” Review
of Economic Dynamics 41:225–242.

Ferrari Minesso, Massimo, Arnaud Mehl, and Livio Stracca. 2022. “Central
Bank Digital Currency in an Open Economy.” Journal of Monetary Economics.

Galí, Jordi. 2015. Monetary Policy, Inflation, and the Business Cycle. 2nd Edition.
Princeton University Press.

George, Ammu, Taojun Xie, and Joseph D Alba. 2020. “Central Bank Digital
Currency with Adjustable Interest Rate in Small Open Economies.” Available
at SSRN 3605918, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=360
5918.

Gertler, Mark, and Peter Karadi. 2011. “A Model of Unconventional Monetary
Policy.” Journal of Monetary Economics 58 (1): 17–34.

Gertler, Mark, and Nobuhiro Kiyotaki. 2010. “Financial Intermediation and
Credit Policy in Business Cycle Analysis.” Handbook of Monetary Economics
3:547–599.

. 2015. “Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy.”
American Economic Review 105 (7): 2011–2043.

Ikeda, Daisuke. 2020. “Digital Money as a Unit of Account and Monetary Policy
in Open Economies.” Institute for Monetary and Economic Studies, Bank of
Japan.

Keister, Todd, and Daniel R Sanches. 2021. “Should central banks issue digital
currency?” Available at SSRN 3966817.

Kumhof, Michael, Marco Pinchetti, Phurichai Rungcharoenkitkul, and
Andrej Sokol. 2021. “Central Bank Digital Currencies, Exchange Rates and
Gross Capital Flows.” ECB working paper series, no. No 2488, https://www.e
cb.europa.eu/pub/pdf/scpwps/ecb.wp2488~fede33ca65.en.pdf.

Murakami, David, and Ganesh Viswanath-Natraj. 2021. “Cryptocurrencies
in Emerging Markets: A Stablecoin Solution?” SSRN working paper, https://p
apers.ssrn.com/sol3/papers.cfm?abstract_id=3949012.

Skeie, David R. 2019. “Digital Currency Runs.” Available at SSRN 3294313, htt
ps://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294313.

36

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3605918
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3605918
https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2488~fede33ca65.en.pdf
https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2488~fede33ca65.en.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3949012
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3949012
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294313
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294313


Smets, Frank, and Rafael Wouters. 2007. “Shocks and Frictions in US Business
Cycles: A Bayesian DSGE Approach.” American Economic Review 97 (3): 586–
606.

37



A Appendix

A.1 Solution to baseline endowment economy model

A.1.1 Full set of equilibrium conditions

Euler equation for banked households:

(Ch
t )

−σ = β(Ch
t+1)

−σ Rt

πt+1

(65)

Euler equation for unbanked households:

β

πt+1

(Cu
t+1)

−σ = λut (1 + ϕM(Mt − M̄)); (66)

Marginal utility of consumption for unbanked households:

(Cu
t )

−σ = λut + µu
t ; (67)

Budget constraint for unbanked households:

Cu
t +Mt +

ϕM

2

(
Mt − M̄

)2
= T u

t +
Mt−1

πt
, (68)

CIA constraint:
Cu

t =
Mt−1

πt
(69)

Money supply:
Mt =

Mt−1

πt
, (70)

Aggregate resource constraint:

Γ

[
T u
t −Mt −

ϕM

2
(Mt − M̄)2

]
+ (1− Γ)(T h

t − Ch
t ) = 0; (71)

A.1.2 Analytical steady state

R̄ =
1

β

π̄ = 1

C̄h = T̄h
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C̄u = T̄u

λ̄u = β

µ̄u = 1− β

M̄ = 1

A.2 Solution to the endowment economy with digital cur-
rency holdings

This subsection outlines solution of the endowment economy model.

A.2.1 Banked households

max
{Ch

t+s,Dt+s,DCh
t+s}∞s=0

Et

∞∑
s=0

[
βs

(
(Ch

t+s)
1−σ

1− σ

)
+ ηhDC ln(DCh

t+s)

]
, (72)

where η0DC is a scaling parameter, DCh
t is CBDC holdings.

Budget constraint in real terms:

Ct +Dt +DCh
t +

ϕh
DC

2
(DCh

t − D̄C
h
)2 = T h

t +
Rt−1Dt−1

πt
+
RDC

t−1DCt−1

πt
(73)

This problem yields the following first-order conditions:

(Ch
t )

−σ = λht (74)

βλht+1

Rt

πt+1

= λht (75)

βλht+1

RDC
t

πt+1

+ η0DC(DC
h
t )

−1 = λht (1 + ϕh
DC(DC

h
t − D̄C

h
)) (76)

A.2.2 Unbanked households

max
{Cu

t+s,Mt+s,DCu
t+s}∞s=0

Et

∞∑
s=0

[
βs

(
(Cu

t+s)
1−σ

1− σ

)]
, (77)
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Budget constraint in real terms:

Cu
t +Mt +DCu

t +
ϕM

2

(
Mt − M̄

)2
= T u

t +
Mt−1

πt
+
RDC

t−1DC
u
t−1

πt
(78)

CIA constraint:
Cu

t ≤ 1

γ

(
Mt−1

πt

)γ

(DCu
t )

1−γ. (79)

I redefine the CIA RHS to be:

Gt(Mt−1, DC
u
t ) =

1

γ

(
Mt−1

πt

)γ

(DCu
t )

1−γ. (80)

With derivatives with respect to Mt and DCu
t equal to

G′
Mt

=

(
Mt−1

πt

)γ−1

(DCu
t )

1−γ (81)

G′
DCu

t
= (1− γ)

(
Mt−1

πt

)γ

(DCu
t )

−γ (82)

First-order conditions for the problem are:
Marginal utility of consumption

(Cu
t )

−σ = λut + µu
t (83)

Euler equation for real money balances

β(
λut+1

πt+1

+ µt+1G
′
t+1(Mt)) = λut (1 + ϕu

M(Mt − M̄)) (84)

Euler equation for digital currency holdings

β
λut+1R

DC
t

πt+1

+ µu
tG

′
t(DC

u
t ) = λut (85)

A.2.3 Full set of equilibrium conditions

BHH
Marginal utility of consumption

(Ch
t )

−σ = λht (86)
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Euler equation for bond holdings

βλht+1

Rt

πt+1

= λht (87)

Euler equation for digital currency holdings

βλht+1

RDC
t

πt+1

+ ηhDC(DC
h
t )

−1 = λht (88)

UHH
Auxiliary variable Gt+1 derivative wrt Mt

G′
Mt

= γ

(
Mt−1

πt

)γ−1

(DCu
t )

1−γ (89)

Auxiliary variable Gt derivative wrt DCt

G′
DCu

t
= (1− γ)

(
Mt−1

πt

)γ

(DCu
t )

−γ (90)

Marginal utility of consumption

(Cu
t )

−σ = λut + µu
t (91)

Euler equation for real money balances

β(
λut+1

πt+1

+ µt+1G
′
t+1(Mt)) = λut (1 + ϕu

M(Mt − M̄)) (92)

Euler equation for digital currency holdings

β
λut+1R

DC
t

πt+1

+ µu
tG

′
t(DC

u
t ) = λut (93)

AGGREGATION
Digital currency aggregate

DCt = ΓDCh
t + (1− Γ)DCu

t (94)

Digital currency supply
RDC

t = ¯RDC (95)
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Money supply
Mt =

Mt−1

πt
ξMt , (96)

Endowment process for Banked

ln(T h
t ) = ρT ln(T

h
t−1) + ϵTh (97)

Endowment process for Unbanked

ln(T u
t ) = ρT ln(T

u
t−1) + ϵTu (98)

CIA constraint for the Unbanked

Cu
t ≤ 1

γ

(
Mt−1

πt

)γ

(DCu
t )

1−γ. (99)

Aggregate resource constraint for the economy

Γ(Ch
t +Dt +DCh

t ) + (1− Γ)
[
Cu

t +Mt +DCu
t + χM

t

]
= Γ

(
T h
t +

RtDt−1

πt
+
RDC

t DCt−1

πt

)
+ (1− Γ)

[
T u
t +

Mt−1

πt
+
RDC

t DCu
t−1

πt

]
(100)

A.2.4 Analytical steady-state solution

This section provides analytical steady solution and highlights its implications for
values of ¯RDC .

Digital currency holdings, unbanked

D̄C
u
= T̄ u

((
γ

1− γ

1− βRDC

1− β

)γ

− ¯RDC + 1

)−1

(101)

Real money holdings

M̄ = T̄ u

((
γ

1− γ

1− βRDC

1− β

)γ

− ¯RDC + 1

)−1
γ

1− γ

1− βRDC

1− β
(102)

Consumption, unbanked

C̄u = T̄ u + T̄ u

((
γ

1− γ

1− βRDC

1− β

)γ

− ¯RDC + 1

)−1

( ¯RDC − 1) (103)
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Digital currency holdings, banked

¯DCh =
ηhDC T̄

h

(1− βRDC)− η0DC(R
DC − 1)

(104)

Consumption, banked

C̄h = T̄ h +
ηhDC T̄

h

(1− βRDC)− ηhDC(R
DC − 1)

(RDC − 1) (105)

Analytical steady-state solution is non-trivial for the general case. We solve the
simple endowment economy model with digital currency assuming that σ = 1 for
tractability.

Equation (87) yields a steady state value for R̄ = 1
β
. Combine (88) with (86) to

get the following steady-state relationship for digital currency holdings of banked:

¯DCh =
ηhDCC̄

h

1− βRDC
(106)

One can observe that the resulting steady-state relationship is restrictive in terms
of values of RDC . As the value of RDC tends to 1

β
, the value of ¯DCh tends to infinity.

RDC is thus bounded by 1
β
= R̄.

Using condition (106) and budget constrain of the BHH yields the following
expression for the digital currency holdings of the banked:

¯DCh =
ηhDC T̄

h

(1− βRDC)− η0DC(R
DC − 1)

(107)

We constrain digital currency holdings to be non-negative. We find the values
for RDC that guarantee non-negativity of ¯DCh. With numerator greater than zero
by definition, we look at the denominator and require it to be non-negative, which
yields:

RDC < 1 +
1− β

β + ηhDC

(108)

This condition determines the upper bound for RDC . This condition implies that
the term spread R̄− ¯RDC is always positive, assuming ηhDC > 0 and β < 1, since:

1 +
1− β

β + ηhDC

<
1

β
=⇒ 0 < ηhDC(1− β) (109)
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A.3 Solution to model with banking and finance sector

A.3.1 The household problem

The FOCs for consumption, labor supply, deposits, digital currencies, and purchases
of equity from the BHH problem are:

λht = (Ch
t )

−σ, (110)

λhtwt = ζ0(L
h
t )

ζ (111)

1 = Λh
t,t+1

Rt

πt+1

, (112)

1 =
ηhDC

λhtDC
h
t

+ Λh
t,t+1

RDC
t

πt+1

, (113)

1 = Λh
t,t+1

[
zkt+1 + (1− δ)Qt+1

Qt + κhΓ
Kh

t

Kt

]
, (114)

where λht is the Lagrangian multiplier from the BHH problem and the household
SDF is:

Λh
t,t+1 = βEt

λht+1

λht
.

A.3.2 Rewriting the banker’s problem

To setup the problem of the banker as in Section 3.3.2 (Equations (37) and (38)),
first iterate the banker’s flow of funds constraint (34) forward by one period, and
then divide through by nt to yield:

nt+1

nt

=

(
zkt+1 + (1− δ)Qt+1

)
Qt

Qtk
b
t

nt

− Rt

πt+1

dt
nt

− RDC
t

πt+1

dct
nt

.

Rearrange the balance sheet constraint (32) and use the fact that dct/nt = xtϕt, to
yield the following:

dt
nt

=

(
1 +

κb

2
x2t

)
ϕt − xtϕt − 1.

Substitute this value for dt/nt into the expression for nt+1/nt, and we get:

nt+1

nt

=

(
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

)
ϕt+

(
1− κb

2
x2tϕt

)
Rt

πt+1

+

(
Rt

πt+1

− RDC
t

πt+1

)
xtϕt.
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Substituting this expression into (35), yields the following:

ψt = Et

Λh
t,t+1(1− σb + σbψt+1)


(

zkt+1+(1−δ)Qt+1

Qt
− Rt

πt+1

)
ϕt

+
(
1− κb

2
x2tϕt

)
Rt

πt+1

+
[

Rt

πt+1
− RDC

t

πt+1

]
xtϕt




= µtϕt +

(
1− κb

2
x2tϕt

)
υt + µDC

t xtϕt,

which is (37) in the text.

A.3.3 Solving the banker’s problem

With {µt, µ
DC
t } > 0, the banker’s incentive compatibility constraint binds with

equality, and so we can write the Lagrangian as:

L = ψt + λt(ψt −Θ(xt)ϕt),

where λt is the Lagrangian multiplier. The FOCs are:

(1 + λt)

[
µt + µDC

t xt −
κb

2
x2tυt

]
= λtΘ(xt), (115)

(1 + λt)
[
µDC
t + κbxtυt

]
= θλtΘ(xt), (116)

ψt = ϕtΘ(xt). (117)

Substitute (117) into the banker’s objective function to yield:

ϕt =
υt

Θ(xt)− µt − µDC
t xt +

κb

2
x2tυt

, (118)

which is (39) in the text.

A.3.4 Full set of model conditions

BANKED HOUSEHOLDS
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λht = (Ch
t )

−σ, (119)

λhtwt = ζ0(L
h
t )

ζ , (120)

1 = Λh
t,t+1

Rt

πt+1

, (121)

1 =
ηhDC

λhtDC
h
t

+ Λh
t,t+1

RDC
t

πt+1

− ϕh
DC(DC

h
t − D̄C

h
), (122)

1 = Λh
t,t+1

[
zkt+1 + (1− δ)Qt+1

Qt + κhΓ
Kh

t

Kt

]
, (123)

where λht is the Lagrangian multiplier from the BHH problem and the household
SDF is:

Λh
t,t+1 = βEt

λht+1

λht
.

UHH
Auxiliary variable Gt+1 derivative wrt Mt

G′
Mt

=

(
Mt−1

πt

)γ−1

(DCu
t )

1−γ (124)

Auxiliary variable Gt derivative wrt DCt

G′
DCu

t
=

1

γ
(1− γ)

(
Mt−1

πt

)γ

(DCu
t )

−γ (125)

Marginal utility of consumption

(Cu
t )

−σ = λut + µu
t (126)

Euler equation for real money balances

β

[
λut+1

πt+1

+ µt+1G
′
t+1(Mt)

]
= λut (1 + ϕu

M(Mt − M̄)) (127)

Euler equation for digital currency holdings

β
λut+1R

DC
t

πt+1

+ µu
tG

′
t(DC

u
t ) = λut (128)

CIA constraint
Cu

t ≤ 1

γ

(
Mt−1

πt

)γ

(DCu
t )

1−γ. (129)
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CAPITAL GOODS PRODUCERS
Investment optimality condition

Qt = 1 +
κI
2

(
It
Ī
− 1

)2

− κI
Ī

(
It
Ī
− 1

)
(130)

Law of motion for capital

Kt = It + (1− δ)Kt−1 (131)

BANKERS’ PROBLEM
Maximum leverage ratio:

ϕt =
υt

Θ(xt)− µt − µDC
t xt +

κb

2
x2tυt

(132)

Tobin’s Q:
ψt = Θ(xt)ϕt (133)

Banker cost variables and SDF:

µt = Et

[
Ωt,t+1

{
zkt+1 + (1− δ)Qt+1

Qt

− Rt

πt+1

}]
(134)

µDC
t = Et

[
Ωt,t+1

{
Rt

πt+1

− RDC
t

πt+1

}]
(135)

υt = Et

[
Ωt,t+1

Rt

πt+1

]
(136)

Ωt,t+1 = Λh
t,t+1(1− σb + σbψt+1) (137)

AGGREGATION
Aggregate quantities:

Ct = ΓCh
t + (1− Γ)Cu

t (138)

Lt = ΓLh
t + (1− Γ)Lu

t (139)

DCt = ΓDCh
t + (1− Γ)DCu

t (140)

Kt = Γ(Kh
t +Kb

t ) (141)

Resource constraint:

Yt = Ct +

[
1 +

κI
2

(
It
Ī
− 1

)2
]
It + Γχh

t + (1− Γ)χM
t + Γχb

t (142)
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Net worth of banks:

Nt = σb

[
(zkt + (1− δ)Qt)K

b
t−1 −

Rt−1

πt
Dt−1 −

RDC
t−1

πt

DCt−1

Γ

]
+ γb(z

k
t + (1− δ)Qt)

Kt−1

Γ
,

(143)

Balance sheet variables:

QtK
b
t = ϕtNt, (144)

QtK
b
t

(
1 +

κb

2
x2t

)
= Dt +

DCt

Γ
+Nt, (145)

xt =
DCt

QtΓKb
t

. (146)

A.4 Solution to the TANK model with CBDCs

A.4.1 The steady state

In the non-stochastic steady state, we have the following:

Q̄ = 1,

π̄ = 1,

R̄ =
1

β
,

R̄DC =
1

β
− ∆̄DC .

We define the discounted spreads on equity and DC as:

s = β[z̄k + (1− δ)]− 1, (147)

sDC = 1− βR̄DC , (148)

which we consider to be endogenous and exogenous, respectively.
From the BHH’s FOC wrt to equity, (123), we have:

1 = β

[
z̄ + (1− δ)

1 + κhΓ K̄h

K̄

]

1 + κhΓ
K̄h

K̄
= β [z̄ + (1− δ)]

Γ
K̄h

K
=

s

κh
.

(149)
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Additionally, in steady state we have:

Ω̄ = β(1− σ + σψ̄),

ῡ =
Ω̄

β
,

µ̄ = Ω̄

[
z̄ + (1− δ)− 1

β

]
,

µ̄DC = Ω̄

[
1

β
− R̄DC

]
,

and so, using (147) and (148), we can write:

µ̄

ῡ
= s,

µ̄DC

ῡ
= sDC .

Next, define J as:

J =
nt+1

nt

=
[
z̄k + (1− δ)

] K̄b

N̄
− R̄

D̄

N̄
− R̄DC D̄C

ΓN̄
,

and use the following:

D̄

N̄
=

(
1 +

κb

2
x̄2
)
ϕ̄− x̄ϕ̄− 1,

ϕ̄ =
K̄b

N̄
,

D̄C

ΓN̄
= ϕ̄x̄,

to write J as:

J = (z̄k + (1− δ)− R̄)ϕ̄+

(
1− κb

2
x̄2ϕ̄

)
R + (R̄− R̄DC)x̄ϕ̄

=
1

β

[
p(s, sDC)ϕ̄+ 1

]
,

where
p(s, sDC) ≡ s+ sDC − κb

2
x̄2,

is defined as the return premium.
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Then, from (49) we have:

N̄ = σb

{[
z̄k + (1− δ)

]
K̄b − R̄D̄ − R̄DC D̄C

Γ

}
+ γb

[
z̄k + (1− δ)

] K̄
Γ

N̄

N̄
= σb

{[
z̄k + (1− δ)

] K̄b

N̄
− R̄

D̄

N̄
− R̄DC D̄C

ΓN̄

}
+
γb
N̄

[
z̄k + (1− δ)

] K̄
Γ

β = σbβJ +
γb
N̄
β
[
z̄k + (1− δ)

] K̄
Γ

= σbβJ +
γbK̄

b

N̄

(
1 + κhΓ

K̄h

K̄

)
K̄

ΓK̄b

= σbβJ + γb(1 + s)ϕ̄
1

ΓK̄b

K̄

= σbβJ + γb(1 + s)ϕ̄
1

K̄−ΓK̄h

K̄

= σb
[
p(s, sDC)ϕ̄+ 1

]
+ γb(1 + s)ϕ̄

1

1− s
κh

β = σb +

[
σbp(s, s

DC) + γb
1 + s

1− s
κh

]
ϕ̄,

or
ϕ̄ =

β − σb
σbp(s, sDC) + γb

s+1
1− s

κh

Equation (35) in steady state gives us:

ψ̄ = β(1− σ + σψ̄)L

= βL− βσbL+ βσbψ̄L

= β(1− σb)L+ βσbψ̄L

=
β(1− σ)L

1− βσbL

=
(1− σb)

[
p(s, sDC)ϕ̄+ 1

]
1− σb

[
p(s, sDC)ϕ̄+ 1

]
=

(1− σb)
[
p(s, sDC)ϕ̄+ 1

]
1− σb − σbp(s, sDC)ϕ̄

,

and from (117) we have
ψ̄ = Θ(x̄)ϕ̄.
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Combine the expressions for ϕ̄ and ψ̄ to get:

Θ(x̄)(β − σb)

σbp(s, sDC) + γb
1+s

1− s

κh

=

(1− σb)

[
p(s,sDC)(β−σb)

σbp(s,sDC)+γb
1+s

1− s
κh

+ 1

]

1− σb − σb

[
p(s,sDC)(β−σb)

σbp(s,sDC)+γb
1+s

1− s
κh

] ,

then rearrange:

0 = H(s, sDC)

= (1− σb)

[
βp(s, sDC) + γb

1 + s

1− s
κh

] [
σbp(s, s

DC) + γb
1 + s

1− s
κh

]
−Θ(x̄)(β − σb)

[
σb(1− β)p(s, sDC) + (1− σb)γb

1 + s

1− s
κh

]
.

We can observe that as γb, θb → 0,

H(s, sDC) = (1− σb)
[
βp(s, sDC)

] [
σbp(s, s

DC)
]

− θb0(β − σb)
[
σb(1− β)p(s, sDC)

]
=⇒ p(s, sDC) → θb0

(β − σb)(1− β)

(1− σb)β

Thus, there exists a unique steady state equilibrium with positive spread s > 0 for
a small enough sDC and γb.

Given s, we then yield:

z̄k =
1

β
(1 + s)− (1− δ),

and we also have:

M̄C =

(
z̄k

α

)α (
w̄

1− α

)1−α

= 1

=

(
Y

K

)α (
Y

L

)1−α

=

(
Ȳ

K̄

)α (
z̄k

α

)α(1−α)
α−1

,
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with

w̄ = (1− α)
Ȳ

L̄
,

z̄k = α
Ȳ

K̄
,

=⇒ w̄ = (1− α)
( z̄
α

) α
α−1

.

Put these together to get:

K̄

Ȳ
=

(
z̄k

α

) 1−α
α−1

=
α

z̄k
.

From the FOCs of the BHH and UHH problem, we have:

(C̄h)−σw̄ = ζ0(L̄
h)ζ ,

(C̄u)−σw̄ = ζ0(L̄
u)ζ .

These imply:

C̄h =

(
w̄

ζ0(L̄h)ζ

) 1
σ

,

C̄u =

(
w̄

ζ0(L̄u)ζ

) 1
σ

,

which gives:

C̄ = Γ

(
w̄

ζ0(L̄h)ζ

) 1
σ

+ (1− Γ)

(
w̄

ζ0(L̄u)ζ

) 1
σ

= L̄− ζ
σ

(
w̄

ζ0

) 1
σ

.

Additionally, we have:

Ī

K̄
= δ,

1

β
=
α Ȳ

K̄
+ 1− δ

1 + κhΓ K̄h

K̄

⇔ Ȳ

K̄
=
β−1 (1 + s) + δ − 1

α
,
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from (149), and:
Ī

Ȳ
=

Ī/K̄

Ȳ /K̄
=

αδ

β−1(1 + s) + δ − 1
.

Then, we have the aggregate resource constraint:

1 =
C̄

Ȳ
+
Ī

Ȳ
+ Γ2κh

2

K̄

Ȳ
+

κb

2

D̄C

Ȳ
.

We now aspire to get a steady-state value for DC
C

. DC is aggregated as follows

DC = Γ ∗DCh + (1− Γ)DCu (150)

We use BHH Euler equation for consumption:

1 =
ηhDC

(Ch)−σDCh
+

1

β
RDC (151)

(Ch)−σ =
ηhDC

DCh
+

1

β
RDC

DCh = ηhDC(C
h)σ +

1

β
RDC

Ch =


(
DCh − 1

β
RDC

)
ηhDC


1
σ

We use standard calibration value for σ = 2, hence the equation is quadratic in
Ch, we further use its positive root, hence

Ch =


(
DCh − 1

β
RDC

)
ηhDC


1
2

UHH
Auxiliary variable Gt+1 derivative wrt Mt

G′
Mt

=

(
Mt−1

πt

)γ−1

(DCu
t )

1−γ (152)

Auxiliary variable Gt derivative wrt DCt

G′
DCu

t
=

1

γ
(1− γ)

(
Mt−1

πt

)γ

(DCu
t )

−γ (153)
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Marginal utility of consumption

(Cu
t )

−σ = λut + µu
t (154)

Euler equation for real money balances

β

[
λut+1

πt+1

+ µt+1G
′
t+1(Mt)

]
= λut (1 + ϕu

M(Mt − M̄)) (155)

Euler equation for digital currency holdings

β
λut+1R

DC
t

πt+1

+ µu
tG

′
t(DC

u
t ) = λut (156)

CIA constraint
Cu

t ≤ 1

γ

(
Mt−1

πt

)γ

(DCu
t )

1−γ. (157)
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