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Abstract

In this paper, we study the mechanisms that govern price stability of MakerDAO’s DAI
token, the first decentralized stablecoin. DAI works through a set of autonomous smart
contracts, in which users deposit cryptocurrency collateral and borrow a fraction of their
positions as DAI tokens. Using data on the universe of collateralized debt positions, we
show that peg volatility is related to collateral risk. The DAI price covaries negatively
with returns to risky collateral, even after controlling for safe-haven demand and the
mechanical impact of collateral liquidations. The introduction of safe collateral types
has led to an increase in peg stability.
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1 Introduction
"I expect DAI (and newer alternatives eg. RAI) to have much higher survivability

than Tether long term."1 Vitalik Buterin, the cofounder of Ethereum

Cryptocurrencies enable peer-to-peer transactions on a public and decentralized
network without the need for intermediation. Stablecoins are a class of cryptocur-
rencies designed to maintain a stable peg to USD. Decentralized stablecoins led by
MakerDAO’s DAI have grown dramatically over the recent years with market capi-
talization exceeding 10 USD Billion. Their key characteristic is that issuance of new
tokens is decentralized through using autonomous smart contracts on the Ethereum
blockchain.2 DAI tokens are generated when an investor deposits a set amount of col-
lateral, typically Ethereum (ETH), into a collateralized debt position (CDP). Based
on the value of ETH collateral, the investor can borrow a fraction of their collateral
as DAI tokens. While DAI’s decentralized method of issuance eliminates custodial
risk, it is exposed to risks associated with fluctuations in the price of collateral coins.

In this paper we study the short-term fluctuations of the DAI peg. There are
two main functions that market participants can achieve by means of trading DAI.
First, speculators use DAI to take long leveraged positions in the collateral asset.
Second, DAI can be used to hedge against movements of unstable coins and fulfil
its “safe-haven” property. Fluctuations in either speculative or safe-haven demands
coupled with limits to arbitrage can lead to DAI deviations from the peg. Changes
in the relative demand for DAI, in turn, can be due to changes in the expectations of
future ETH performance or liquidations of DAI by MakerDAO’s protocol in response
to a reduction of collateral value. Through both a model and empirical evidence, we
quantify the importance of each of these channels for instability of the DAI peg.

We start by developing a simple model of equilibrium price formation. In the

1https://twitter.com/VitalikButerin/status/1263191590543253504
2A smart contract is a set of instructions, written in computer code, that defines the conditions of
the contract for each counterparty under different scenarios. Being managed by computer code
and visible on the blockchain, it can be verified publicly by all nodes in the blockchain.
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model there are three types of agents: speculators that deposit risky ETH collateral
and borrow a fraction as DAI tokens, arbitrageurs that short DAI when the peg trades
at a premium, and a demand shock for DAI from investors that seek DAI to earn
savings and gain utility from its use in Decentralized Finance (DeFi) applications.
Speculators’ beliefs about future performance of collateral follow a two-state process.
In equilibrium, DAI peg-prices are dependent on the state of the collateral. When
ETH returns increase (good state), investors collateralize ETH, borrow DAI, and
then sell DAI on an exchange to buy more ETH. This puts a downward pressure on
the price of DAI and generate discounts in the DAI price. In contrast, in the bad
state, the decline in ETH returns cause investors to reduce their DAI borrowings.
Therefore, the relative decline in DAI supply from speculators and an increase in
DAI demand from the secondary market (safe-haven effect) generate peg premiums,
leading to a negative correlation between DAI prices and returns to ETH collateral.
The model implies that both channels – speculative beliefs and safe-haven effect –
are important to generate both premia and discounts in DAI price.

The model also generates testable implications regarding the behavior of DAI
prices during periods of low and high safe-haven demand, changes in ETH volatility
and the interest rate on DAI borrowings, which is known as the stability rate. Peg-
premiums in the bad state are higher in periods of high safe-haven demand, high
ETH volatility and when the stability rate is higher. A comparative statics exercise
shows that the peg volatility increases with volatility of ETH collateral.

We then extend the model by introducing an additional collateral type, the USDC
stablecoin, that has lower volatility than ETH. Arbitrageurs have an opportunity to
reduce their risk by issuing DAI with a lower volatility collateral type. To close a
peg-price premium, arbitrageurs deposit collateral, borrow DAI tokens and sell it in
the secondary market. We show that in equilibrium, arbitrageurs use the new collat-
eral type to conduct arbitrage. The share of USDC collateral used by arbitrageurs
increases as the USDC volatility declines. A comparative statics exercise shows that
the addition of a stable collateral type causes a decline in the DAI premium in the
bad state, and a decline in the volatility of the DAI peg. This is consistent with
stable collateral leading to a decrease in the limits to arbitrage. Arbitrageurs now
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require lower premium to borrow DAI and sell it in the secondary market.
We present empirical evidence to support model predictions. We use the entire

history of data on individual Collateralized Debt Positions (CDP), which includes
the amounts of ETH collateral deposited, DAI borrowed, and the timestamp of each
transaction. Consistent with model predictions, we find DAI borrowings respond
positively to an increase in ETH returns.

We then test the channels through which collateral risk can generate peg-price
deviations and volatility. The first channel is fluctuations in speculative beliefs on
the collateral. Through the lens of the model, an increase in collateral risk reduces
the capacity of arbitrageurs to deposit ETH collateral, borrow DAI tokens and sell
them in the secondary market at a premium. The limits to arbitrage cause peg-price
deviations to persist, and an increase in peg volatility. Second, extreme declines
in the price of collateral result in liquidation events. The corresponding decline in
supply cause peg-prices to increase, all else equal. Third, premiums can occur in
periods of elevated demand, and are triggered in the bad state due to safe-haven
effects.

We empirically test the contemporaneous correlation between the DAI price and
ETH returns, liquidations and demand shocks. Consistent with our hypothesis, we
document a significant negative correlation between DAI prices and ETH returns.
Our model channel of speculative beliefs can rationalize this result; a bad state of
ETH collateral causes investors to deleverage, reducing DAI supply and generating
a premium. Large drops in ETH prices can result in a substantial decline in DAI
supply and significant peg premiums. For example, on 12 March 2020, known as
Black Thursday to the cryptocurrency community, ETH crashed by up to 50% in a
single day and resulted in a DAI peg-premium of 800 basis points, and 10 Million
USD of liquidations of ETH collateral.

We quantify the relative importance of collateral risk, liquidations and secondary
market demand through an analysis of variance (ANOVA) of our explanatory vari-
ables. For peg-prices, our decomposition reveals that speculative beliefs play an
important role: ETH returns is the most robust predictor of peg-price deviations
explaining up to 51.1%, followed by liquidations at 30.5% and the stability fee at
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13.2%. For intra-day volatility, we find liquidations is the biggest contributor at
42.9%, followed by the changes in DAI trading volume at 42.7%, and ETH volatil-
ity at 13.7%. Taken together, our model channel of speculative beliefs is therefore
quantitatively significant in explaining DAI premiums and the observed negative cor-
relation between DAI prices and ETH returns. In contrast, elevated DAI volatility
can be explained by periods of high secondary market demand and liquidations.

In a robustness test, we test for the dynamic effects of ETH returns, secondary
market demand changes, liquidations and the stability rate using a method of local
projections in Jordà (2005) that controls for feedback through lags of the DAI price
and controls. Consistent with our prior analysis, we find a negative shock to ETH
returns, an increase in liquidations and secondary market demand changes have
persistent effects on peg-premiums and reduce aggregate DAI borrowings. We also
show that a shock to the stability rate has a long-term positive effect on the DAI
price, however it has limited scope due to delays in updating rates due to the voting
procedure of the MakerDAO protocol, and the existence of a lower bound on the
stability rate.

To mitigate the collateral risk, MakerDAO attempted to increase the share of
DAI borrowing through stable collateral types since March 2020. The introduction
of USDC collateral was in direct response to the Black Thursday event of March 2020,
to reduce the exposure of the DAI peg to mass liquidations from a risk-off event in
the crypto market. Empirically, we find an increase in the share of stable collateral
by 1% reduces the DAI price and the volatility of the DAI peg by approximately
0.5 basis points. This is consistent with the model prediction of stable collateral
increasing the capacity for arbitrageurs to step in and absorb differences between
the primary and secondary market rates.

In addition to depositing USDC collateral, the MakerDAO protocol introduced
a peg stability module (PSM) in December 2020. Investors can directly swap DAI
for USDC at a 1:1 rate.3 By eliminating liquidation risk for investors, the PSM

3A technical difference between the PSM and having stable collateral type is liquidation risk. For
example, if investors deposit USDC collateral into a vault, there is risk of a collapse of the USDC
peg which can trigger a sufficient decline in the value of collateral and a liquidation event.

5



incentivizes arbitrage participants to swap USDC for DAI when DAI prices trade at
a premium. The increase in DAI supply by arbitrageurs pushes prices toward one.
We document a decline in both the magnitude of peg-price deviations and intra-
day volatility of approximately 70 basis points after the introduction of PSM on
December 18th, 2020. To rule out the possibility of a tighter peg due to idiosyncratic
developments in the USDC stablecoin, we test a difference-in-difference (DiD) design
to determine how DAI/USD prices changed relative to a control group of USDC/USD
prices. The results of the test confirm the findings of an increase in peg efficiency.
Relative to the USDC/USD price, we find a decline in absolute peg-price deviations
of 101.8 basis points, and a 61.0 basis point decline in volatility following the PSM.
Following the PSM, the increased ability of arbitrageurs to short sell DAI results in
a compression of peg premiums. The peg is more resilient to extreme declines in the
price of collateral, with smaller premiums and a shift toward safe collateral during
an extreme ETH price decline in May 2021.

2 Related literature
The empirical research most closely related to our paper focuses on investigating

properties of stablecoins (Berentsen and Schär, 2019; Bullmann et al., 2019; BIS,
2019; Eichengreen, 2019; Dell’Erba, 2019; Arner et al., 2020; Frost et al., 2020; Force
et al., 2020; Barthelemy et al., 2021), arbitrage in stablecoin and cryptocurrency
markets (Lyons and Viswanath-Natraj, 2020; Makarov and Schoar, 2019, 2020; Borri
and Shakhnov, 2018; Pernice, 2021), governance and voting behavior of decentral-
ized stablecoin protocols (Gu et al., 2020; Zhao et al., 2022; Sun et al., 2022) and
intraday price changes to support the role of stablecoins as safe-havens (Baur and
Hoang, 2020; Baumöhl and Vyrost, 2020; Wang et al., 2020; Bianchi et al., 2020;
Gloede and Moser, 2021). For example Eichengreen (2019) comments on stablecoins
being backed by either national currencies or cryptocurrencies, and highlights that
systems can be vulnerable to speculative attack if there is perception that the peg
is under-collateralized. Lyons and Viswanath-Natraj (2020) find empirical evidence
supporting an arbitrage mechanism for dollar-backed stablecoins: through which pri-
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vate investors deposit (withdraw) dollars when the stablecoin trades at a premium
(discount), driving prices toward one. This arbitrage is central to our thesis of collat-
eral risk: stablecoins backed by risky collateral no longer have a functioning arbitrage
mechanism to stabilize the peg. Therefore collateral risk acts as a limit to arbitrage,
and we find, both empirically and through our model, that the addition of stable
collateral types increases the role of arbitrage in stabilizing the peg. We find em-
pirical support for the volatility differences across stablecoin regimes in Jarno and
Kołodziejczyk (2021). A comparison of volatility of dollar-backed, crypto-backed
and algorithmic (un-collateralized) stablecoins reveals that peg-price deviations of
crypto-collateralized stablecoins are larger and more dispersed.

Our paper contributes to an emerging literature on DeFi (Harvey et al., 2021;
Schär, 2021). In addition to decentralized stablecoins, an alternative application
is DeFi lending protocols, such as Compound, set interest rates and allocate funds
automatically through algorithms (Gudgeon et al., 2020; Perez et al., 2020; Qin et
al., 2021; Lehar and Parlour, 2022; Chiu et al., 2022). Other DeFi applications that
use the Ethereum blockchain are automated market makers, which are exchanges
that trade based on algorithms without the need for a limit order book. The most
common type of decentralized exchange (DEX) uses an automated market-maker
(AMM) constant product algorithm, with research focusing on the design of AMMs,
the role of arbitrage and liquidity provision with competing platforms of DEX and
centralized exchanges. (Angeris and Chitra, 2020; Capponi and Jia, 2021; Aoyagi and
Ito, 2021; Lehar and Parlour, 2021; Barbon and Ranaldo, 2021; Park, 2022). DAI’s
main use cases are as a source of savings in lending protocols and in liquidity pools
for trading in decentralized exchanges. Perez et al. (2020) find lending protocols
are susceptible to liquidation risk. We complement their findings by examining how
liquidation events for DAI affect dynamics of the peg. In addition to understanding
price-movement, we are the first paper to utilize rich data on the universe of CDP
positions to shed light on the determinants of an individual CDP leverage and the
probability of liquidation. We find that in the periods of positive ETH returns, high
volatility, and higher interest rates reduce the leverage ratio. Liquidations are more
likely in periods of extreme negative returns and high volatility of ETH collateral.
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Turning to the theoretical research, recent work has modeled the price dynamics
of stablecoins (Routledge and Zetlin-Jones, 2021; Klages-Mundt and Minca, 2020;
Li and Mayer, 2020; d’Avernas et al., 2022). Routledge and Zetlin-Jones (2021)
adapt a model of fixed exchange rates with speculative attacks to stablecoins, and
point out that centralized stablecoin regimes can collapse due to expectations of
insufficient backing of dollar reserves. Klages-Mundt and Minca (2020) model over-
collateralized stablecoins and show that high liquidation costs can lead to CDPs
optimally creating a reserve buffer by posting excess collateral to insure against ex-
treme negative price movements. They also model the dynamics of liquidation events
on DAI peg-price premiums. Li and Mayer (2020) examine a centralized issuer of
dollar-backed stablecoins that has autonomous control of token supply and maxi-
mizes the dividend of shareholders that own a governance token. Through the lens
of their model, the issuer conducts open market operations to stabilize the price
around its peg. Under this centralized arrangement, they consider reserve manage-
ment and over-collateralization as potential solutions to avoid speculative attacks
and peg discounts. d’Avernas et al. (2022) determine the equilibrium conditions in
which both dollar-backed and decentralized stablecoins backed by crypto collateral
can maintain parity in response to a negative demand shock or a liquidation of col-
lateral. With respect to decentralized stablecoins, they show that a buffer reserve
maintained by the governance protocol can be used as a stabilizing mechanism to
restore peg stability in response to peg-discounts, similar to reserve management of
a central bank. We extend existing theoretical work on stablecoins by modelling
the fundamental sources of peg-instability in over-collateralized stablecoins like DAI.
Our model generates a number of empirical properties: including negative correla-
tion between DAI peg-prices and ETH returns, the positive relationship between the
volatility of peg-price deviations and the volatility of collateral. We also model how
stability mechanism and how multiple collateral types can diversify collateral risk
and decrease limits to arbitrage, thereby increasing peg stability.

Finally, we draw on a literature on the properties of arbitrage with financial
constraints (Gromb and Vayanos, 2002, 2018; Brunnermeier and Pedersen, 2009;
Nyborg and Rösler, 2019). Brunnermeier and Pedersen (2009) examine the role
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of funding margins on asset prices and the feedback between funding and market
liquidity.4 Gromb and Vayanos (2018) show that shocks to arbitrage capital can
increase spreads and risk-premia.5 We contribute to this literature by focusing on
an alternative limit to arbitrage: by measuring the riskiness of capital via stable and
risky collateral types. We model the crucial role arbitrageurs play in the setup, and
how risky collateral generates a limit to arbitrage. We show that in equilibrium,
arbitrageurs can use a stable collateral type to conduct arbitrage, increasing relative
supply in response to peg-price premiums and driving prices back toward one. This
finds empirical support through the introduction of stablecoin collateral types in
2020, in which DAI can be swapped with USDC at a 1:1 rate. This led to a significant
decline in the absolute size and intra-day volatility of peg-price deviations.

3 Definitions and data

DAI creation process

To open a collateralized debt position (CDP), an investor deposits a set amount
of collateral (e.g., ETH), into a vault. The investor can borrow a fraction of their col-
lateral as DAI tokens. The vault is regulated through a set of autonomous contracts,
that update in real-time the valuation of collateral and DAI borrowings of the CDP.
We outline three use cases for DAI tokens. First, DAI may be deposited as savings
in the DAI savings protocol.6 Second, DAI is a popular currency to use in decentral-
ized finance (DeFi) protocols, such as Compound, that set interest rates and allocate

4The liquidity spirals covered in Brunnermeier and Pedersen (2009) do not feature in our model, as
we assume an exogenous process for the collateral. If, however, there are sufficient feedback effects
from DAI liquidations to ETH prices, we can expect a feedback loop in which declines in ETH
prices increase liquidations, causing investor losses and further declines in the ETH price. We test
this empirically in section 5.3 and we find liquidations do not have a statistically significant effect
on ETH returns.

5The role of collateral risk in our paper has a parallel in inter-bank repo markets. Nyborg and
Rösler (2019) investigate the spread between unsecured and secured (repo) rates, and observe that
risk-free rates on secured collateral are higher than unsecured rates. This spread is increasing in
periods of increased volatility and negative returns of collateral, and suggests collateral risk is a
limit to arbitrage in pricing interbank market rates.

6Adjustments of the DAI savings rate is set by the MakerDAO protocol as a potential stability tool,
which we discuss in more detail in a following section.
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funds automatically through algorithms. As of 10 May 2021, DAI savings lent in the
Compound protocol total over 4 USD Billion, and lending rates are approximately
3% per annum.7 Third, it may be used as a vehicle currency to purchase other cryp-
tocurrencies, for example BTC and ETH. To close a CDP position, an investor must
first redeem all DAI tokens, by either selling the investment currency for DAI tokens
in the secondary market or removing their DAI savings from the DSR or a DeFi
lending protocol. Once all DAI tokens borrowed are redeemed, the smart contract is
regulated to unlock their collateral, closing the CDP.8

Leverage Ratio and Liquidations

A key feature of the CDP is that investors need to over-collateralize their bor-
rowings. We calculate the leverage ratio as in Equation (1). The leverage ratio
is computed as the ratio of generated DAI (which has a smart contract price of 1
USD), to the collateral value in USD. If ETH prices fall, then an investor can either
inject more ETH collateral, or alternatively redeem DAI to maintain their level of
collateral.

Leverage Ratio =
Generated DAI

Collateral Price× Collateral Amount
× 100 (1)

There is a limit on how much DAI one can borrow. Each vault has a maximum
leverage ratio, which we define as Leverage Ratiomax. For vaults with ETH collateral,
the maximum DAI that can be borrowed is equivalent to two thirds of the dollar value
of the ETH collateral, so Leverage Ratiomax = 2

3
. The Maker Protocol calculates a

real-time liquidation price, which is the price of collateral at which the Vault leverage
is equal to the maximum leverage ratio, calculated in Equation (2). If the price of
collateral falls below the liquidation price, this will trigger a liquidation event.

Liquidation price =
Generated DAI

Collateral Amount
× 1

Leverage Ratiomax
× 100 (2)

7See https://compound.finance/markets for more details.
8We outline the steps in creating DAI in a schematic in Appendix A
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In a liquidation event, the investor is required to repay the debt of DAI tokens
using their remaining collateral, as well as pay a liquidation penalty. At an ETH price
of 100 USD, DAI borrowings of 100 USD, and 2 ETH, gives a leverage ratio of 50%.
The liquidation price is calculated as DAI

ETH×
1

Leverage Ratiomax
×100 = 100

2
× 1

66.67
×100 =

75USD. Suppose in the following period, the ETH price falls below the liquidation
price to 60 USD.9 As the new ETH price is lower than the liquidation price, DAI
borrowings are liquidated to zero. To pay off the DAI loan, the investor is required
to cover the total value of the loan through their ETH collateral. The total value
of ETH at the new price is 120 USD. Subtracting the value of the DAI loan, gives
a post liquidation amount of ETH collateral equal to 20 USD, which is 1

3
ETH. To

pay off the loan, the smart contract forces an auction of 5
3
ETH.

The system of smart contracts enforces an auction mechanism to sell the system
collateral and burn DAI tokens. First, a set of agents called keepers detect an
under-collateralized Vault and triggers a liquidation. All of the collateral is put
up for auction to cover the outstanding DAI and a liquidation penalty. Once the
bid reaches the amount of the DAI loan including any liquidation fees, the auction
reverses and bidders now compete by offering to accept less collateral for the DAI
they bid in the previous phase. Once an auction settlement is reached, the bidder
receives the sold collateral, and an amount of DAI equal to the loan and liquidation
fees is burned from the system. The Vault owner receives leftover collateral if any
remains.

The MakerDAO system incentivizes vault owners to maintain leverage low in
order to prevent liquidation events. This includes setting up price alerts for the
collateral asset(s) being used, or developing a rule to recapitalize when the collat-
eral price falls below a certain level as an additional buffer. In Appendix D, we
provide additional information on additional safeguards put in place by MakerDAO
governance in the event liquidation auctions do not raise sufficient funds to cover the
outstanding DAI and penalty fees.

In addition to paying off the loan, investors are required to post penalty fees

9We provide a schematic of the liquidation event in Appendix A
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that are up to 15% of DAI borrowed. These additional fees make liquidation costly,
and cause investors to post sufficient collateral as a buffer against extreme price
movements. We plot in Figure 1 the USD price response, the ETH price and DAI
liquidations on 12 March 2020. On this day, extreme price changes in collateral
caused a large liquidation, contraction in DAI borrowings and significant peg-price
premiums, as evident in DAI premiums of up to 800 basis points following a 50% daily
decline in ETH prices. Congestion on the blockchain led to high gas prices, which
in turn led to delays for Vault owners to attempt to add more collateral and redeem
DAI tokens to their Vaults within the Protocol’s one-hour window.10 The drop in
collateral value triggered liquidation auctions for around 1,200 Vaults, and led to a
peak liquidation value of approximately 10 million USD on March 12th. Pressure
on the DAI peg is due to the failure of the auction mechanism. Keepers, who sell
DAI tokens for collateral from the auctions, did not have sufficient DAI liquidity to
participate in the auctions. To burn DAI from liquidations, the governance body
decided to auction MakerDAO tokens (MKR) as an effective open market operation,
diluting MKR’s value. 11

DAI stability rate

The MakerDAO protocol has in place a series of tools can be used when a coin
like DAI trades systematically above or below parity. One tool that is used is the
stability fee on DAI, which is analogous to an interest rate on money implemented
by a central bank. A critical difference is that while central banks typically have a

10Gas is a measure of the amount of ether (ETH) a user pays to perform a given activity, or batch
of activities, on the ETH network. These transaction costs are analogous to commissions on
exchanges, however these costs are paid to the miners who authenticate the transactions on the
Ethereum blockchain. These prices are denominated in GWEI which is equivalent to one-billionth
of one ETH, and they are typically an average of 10 GWEI per transaction. The average gas prices
temporarily spiked to over 100 GWEI per transaction from the 10 GWEI average seen just one day
prior. Critically, these units of GWEI provide a proxy for transactions’ latency time. Gas prices,
as well as daily amounts of Ether Gas used, are provided in https://ethgasstation.info/. For
more information see https://blockonomi.com/ETH-gas-prices-surged/

11We provide more detail on dynamics of the MKR price in Appendix
D. For more details on the MakerDAO liquidations in March 2020, see
MakerDAO’s public release on the event https://blog.makerdao.com/
the-market-collapse-of-march-12-2020-how-it-impacted-makerdao/.
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centralized arrangement for setting rates, DAI has a decentralized, continuous-voting
procedure for approval of a stability-fee (i.e., rate) change. Voters can choose from a
range of options for the future stability rate, and if the number of votes surpasses the
number of votes for the prior decision, the stability rate will change.12 The stability
rate’s purpose is to target the peg through changing the level of DAI borrowings,
and in turn system leverage. All else equal, a higher a stability fee increases the cost
of DAI borrowings, and reduces total leverage of the system.

Multiple Collateral DAI and the peg stability module

A major change to the DAI protocol occurred on November 18th, 2020 with
the introduction of multiple collateral types. Users can lock alternative types of
collateral, such as WBTC, which is a token pegged to BTC prices that trades on
the Ethereum blockchain. On 12 March 2020, the MakerDAO community decided to
adopt stablecoin USDC as collateral. Stablecoin collateral can have a leverage ratio
of one, allowing a much higher degree of leverage than with risky collateral types. To
further encourage the use of stable collateral types, the Maker Protocol introduced
the peg stability module (PSM) in December 2020, in which users are able to swap
DAI with the USDC stablecoin. The PSM effectively anchors the DAI/USD peg to
the value of USDC, by allowing users to swap USDC with DAI at a 1:1 rate without
needing to create a vault and deposit collateral. In this way, there is no liquidation
risk, however users need to make a one-off fee to use this. This increases the incentive
for arbitrageurs to close peg-price deviations using the PSM. A technical difference
between the PSM and having stable collateral type is liquidation risk. For example,
if investors deposit USDC collateral into a vault, there is risk of a collapse of the
USDC peg which can trigger a sufficient decline in the value of collateral and a
liquidation event. In contrast, the PSM transfers the liquidation risk to the Maker
Protocol, which will be willing to exchange DAI for USDC tokens at a 1:1 rate even

12Votes are based on staking the Maker Governance token MKR, where 1 MKR locked is equal to
1 vote. Additional information on the fundamental valuation of the MKR token is provided in
Appendix D.
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when USDC prices are trading at a significant discount.13

3.1 Data and summary statistics

To test the effects of collateral returns on the borrowing behavior of investors,
we utilize a data set that records every transaction made by an individual CDP,
including amounts of ETH collateral deposited, DAI borrowed, and the timestamp
of each transaction. The actions of depositing and closing the ETH CDP is defined as
"lock" and "free" respectively. The action of the investor borrowing and redeeming
DAI tokens is classified as a "draw" and "wipe" respectively. The sample starts in
January 1st, 2017 and ends in November 17, 2019.14 For an individual CDP, we
can trace the amounts of ETH collateral, and the amounts of DAI borrowed and
redeemed at any point in time. This allows us to calculate a real-time leverage ratio,
defined as the ratio of total DAI borrowed to the value of ETH Collateral.

Aggregate data on the amounts of DAI borrowed of each collateral type is ob-
tained at https://makerburn.com/#/. The dataset also provides policy parameters,
such as the stability rate on borrowings and the debt ceilings for each collateral type.
For the total amounts of each type of collateral deposited in the system, we use data
from DuneAnalytics, an open source platform with statistics on decentralized finance
applications https://duneanalytics.com/hagaetc/maker-dao---mcd. Consoli-
dating DAI borrowings with total collateral, we can calculate the total system lever-
age, as well as the leverage of each collateral type. DAI liquidations and governance
token MKR mints and burns are available at https://www.mkranalytics.com/.

For price data on ETH, DAI and other collateral types, we use https://www.

coinapi.io/. Coinapi offers a monthly subscription with access to their data api,
which gives historical cryptocurrency OHLCV data. Where multiple cryptocurrency
exchanges offer the same data, we choose the exchange that (i) has the longest time
series and (ii) is one of ten exchanges that has "trusted volume" according to a report

13For more details on how the PSM works, we refer readers to https://community-development.
makerdao.com/en/learn/governance/module-psm/

14The ending date of November 17, 2019 corresponds to the date at which users migrated from the
single to multi collateral DAI system. The dataset obtained from mkr.tools.api only records
investor transactions for the single collateral version.
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filed by the SEC.15 We use hourly data for the pairs of ETH/USD, DAI/USD from
the Bitfinex exchange from 13 April 2018 to 31 March 2021, and hourly data for
the USDC/USD pair from the Kraken exchange available from 8 January 2020 to 31
March 2020.

We present summary statistics in Table 1 for DAI, ETH returns and system
parameters of the stability rate and leverage, over the full sample from 13 April
2018 to 31 March 2021. Figure 2 plots the time-series of DAI price, ETH price,
the leverage and stability rate. DAI peg-price premium is on average of 100 basis
points over the full sample. The average ETH return is 0.17%, and the standard
deviation of returns is 5.8%. The large declines in ETH returns peaked on 12 March
2020, which recorded a -58.2% decline. Stability rates on borrowing DAI in ETH
vaults are typically 3% on average, with periods of high interest rates of 20% set
in 2019. The leverage ratio for ETH collateral is 0.3 over the full sample. This is
much lower than the maximum leverage of two thirds. Low system leverage provides
a capital buffer in the event of a collapse in collateral value. With a leverage ratio
of 30%, the ETH price can crash by 50% in one day and the CDP is still sufficiently
collateralized.

To understand the interaction of prices with system parameters, we provide a
correlation matrix of all variables in Table 2. First, there is a negative correlation
between DAI and ETH returns of -0.05. Peg-price premiums are associated with neg-
ative ETH returns. Second, we observe a negative correlation between DAI leverage
and stability rate of -0.34. This indicates that high borrowing rate on DAI is asso-
ciated with a decline in DAI borrowings, and system leverage. Finally, the stability
rate is negatively associated with DAI price (-0.19). This is interest-rate setting of
DAI borrowing in response to peg-price deviations: stability rates are increased in
periods of discounts, and decreased in periods of premiums.

15See https://www.sec.gov/comments/sr-nysearca-2019-01/srnysearca201901-5164833-183434.
pdf.The report tests exchanges for fraudulent activities (e.g., suspicious variability in bid-ask
spreads, systematic patterns in histograms of transaction size) and finds that the exchanges we
use price data from do not have the telltale patterns in trading volume or spreads.
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4 Model
Before turning to the empirical results, we first develop a model to structure our

testable hypotheses. As a starting point, we introduce three types of agents in the
model, ETH speculators, arbitrageurs, and safe-haven demand. Speculative investors
deposit ETH collateral and borrow DAI tokens to invest in risky cryptocurrencies.
Arbitrageurs take long or short positions in DAI based on mispricing of the peg.
Safe-haven demand for DAI captures the token’s role in algorithmic lending and
other DeFi applications, that enable users to deposit DAI and accrue savings.

The primary goal of the model is in providing testable implications on the mech-
anisms that govern leverage and peg stability. First, we show that peg-premiums
differ conditional on the level of safe-haven demand. In periods of high safe-haven
demand, arbitrageurs require significant peg premiums to short DAI and clear the
market. We show that peg-premiums occur precisely when collateral prices are in
the bad state, generating a negative covariance between peg-prices and returns on
ETH collateral. Second, we show that in response to an increase in the volatility
of collateral, the model generates a higher peg-price premium, a decline in investor
borrowings and leverage, and an increase in the volatility of peg-price deviations.
We then turn to a discussion of stability tools, such as the interest rate on DAI
borrowings and the introduction of stable collateral types. We show that the price
increases with a rise in the interest rate on DAI borrowings. Stable collateral reduces
arbitrageurs’ exposure to collateral risk and they require smaller premiums to absorb
safe-haven demand and clear the market.

4.1 Timing

We consider a model with two periods – 1 and 2. At some point of time 0 before
trading starts, investors open a CDP by depositing non-stable collateral, ETH, into
a MakerDAO vault. Period 1 is a trading round. In period 1, DAI tokens are
borrowed (issued), and secondary market trading occurs. There are two crypto-
currencies traded in the market: non-stable ETH and stable DAI. Cash is in dollars
and pays a constant rate of return r. We assume that the investors are small enough

16



to affect either the Dollar rate or ETH prices, which are exogenously given. DAI is
in zero-net supply. In period 1, either ETH speculators and/or arbitrageurs borrow
DAI tokens in response to a demand shock for DAI in the secondary market. Finally,
in period 2, all investors close their CDPs and redeem all DAI tokens. No secondary
market trading occurs in period 2. Market clearing conditions in period 1 determines
DAI prices.

0

Open CDP

1

Investors Borrow DAI,
Arbitrageurs Long DAI,
DAI Demand Shock Close CDP

2

We denote the price of DAI in period t as pt and its conditional on period 1
variance by σ2 = V ar1[p2]. DAI is liquidated in period 2 and is exchanged to USD at
the risky rate p2 with mean 1 and variance σ2

2.16 We denote by iB the DAI stability
rate and by iL the saving rate. We assume iL < iB. The return on ETH in the
period 2 is a random variable RE with mean µE and variance σ2

E.

4.2 Agents

The model includes three types of investors: ETH speculators, arbitrageurs and
safe-haven DAI demand. In period 1, ETH speculators invest their wealth W s

1 in
ETH optimally decide how much to further leverage their position in ETH via issuing
DAI. They do this by maximizing their mean-variance expected utility function. ETH
speculators’ beliefs about the expected return on ETH is affected by their sentiments.
Specifically, they believe that the expected return on ETH depends on the state of
nature s = G or B which occur with probabilities π and 1− π respectively and that
µ(G) > µ(B). The state of speculators’ beliefs can, for example, depend on the

16This assumption is motivated by the fact that MakerDAO does not guarantee 1:1 parity of DAI
to USD during the liquidation event. Moreover, it is possible that governance body can vole to
change the target rate of 1 in a case of instability episodes.
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recent past performance of ETH.
Arbitrageurs observe DAI price and step in to profit from any discrepancy between

the DAI price and unity. We denote their wealth in period t by W a
t but they can

finance their positions by borrowing any amount in USD at the Dollar rate r. If
the DAI is traded at a discount, arbitrageurs buy DAI in the secondary market and
earn iL on their DAI holdings. If DAI is traded at premium, arbitrageurs issue DAI
tokens and put ETH collateral at highest possible leverage ratio θ̄. Arbitrageurs are
not sentimental with respect to ETH and believe that Ethereum returns are serially
uncorrelated and the expected value of ETH returns is µA = µE. Both speculators
and arbitrageurs have the same mean-variance risk preferences with the risk aversion
coefficient γ.

We model safe-haven demand as an aggregate demand D from customers who
seek safety during periods of collapse of unstable coin (ETH) or have some intrinsic
needs to purchase a stablecoin currency. It captures DAI’s use in decentralized
finance (DeFi) protocols, such as Compound, that set interest rates and allocate
funds automatically through algorithms. In order to model the safe-haven effect of
DAI we assume that the demand changes depending on the state of ETH collateral:
D(B) > D(G). In the baseline calibration, we set demand to zero in the good
state and positive in the bad state. This captures in a stylized way the safe-haven
component of stablecoins that typically appreciate during downturns in risky crypto
asset prices (Baur and Hoang, 2020).

We describe the structure of the model and investors demands backwards start-
ing from period 2. In period 2 there is no trading. Each investor type convert
their ETH positions into USD according to the realization of the return distribution.
Furthermore, DAI is being liquidated at the final liquidation price p2.

In period 1, speculators’ demand is formed in the following way. Speculators
leverage their ETH positions by borrowing DAI and converting it into ETH. Their
leverage ratio θ is optimally calculated by maximizing their expected utility function
given their beliefs in period 1. Their wealth W s

2 evolves as shown in Equation (3):
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W s
2 = W s

1

(
RE(1 + θp1)− θp2 − θiB

)
. (3)

The first term of this expression is the return earned on the leveraged position of
ETH, the second term is the USD price of DAI the speculators buy back to release
their collateral, and the third term is the DAI borrowing fee paid by the speculators.

The arbitrageurs’ wealth changes according to the following dynamics:

W a
2 =

 W a
1

(
ω(1 + iL)p2/p1 + (1− ω)(1 + r)

)
, ω ≥ 0,

W a
1

(
−ω

θ̄
RE + ω(p2 − p1(1 + r) + iB) +

(
1 + ω

θ̄

)
(1 + r)

)
, ω < 0,

(4)

where ω denotes the fraction of arbitrageurs’ wealth invested in DAI.
The first equation corresponds to the case when arbitrageurs buy DAI in the

secondary market. They invest a fraction 1−ω of dollar wealth in dollars at the risk-
free rate. The remaining fraction of wealth is used to purchase DAI at p1 and earn
the DAI savings rate iL. In period 2, they re-convert DAI back to dollars at p2. The
dollar profit they make by going long in DAI is (1 + iL)p2/p1. They typically engage
in a long position to exploit mispricing when DAI traded at a discount. Theoretically,
they can also buy DAI at a premium if profit earned on the saving rate iL exceeds
losses from buying DAI at premium and the risk of holding it.

The second equation corresponds to the case when arbitrageurs find it more
profitable to short-sell DAI. They invest a fraction 1 + ω

θ̄
in dollars at the risk-free

rate r. The remaining fraction of wealth is used to purchase ETH collateral. They
post |ω|W

a
1

θ̄
of ETH collateral, borrowing |ω|W a

1 amount of DAI and selling it for
dollars in the secondary market. They then invest the proceeds at the dollar risk-
free rate r, and reconvert back to DAI in the next period. The dollar profit they
make by short-selling 1 unit of DAI is given by the term p1(1 + r)− p2 − iB.17

Both types of investors maximize their corresponding mean-variance utility func-
tions subject to the evolution of wealth in Equations (3) and (4), and constraints on
17The DAI savings and borrowing rates iL and iB are dollar reference rates, as the wealth of the
investor is in dollars.
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the share of DAI borrowing to be bounded between 0 and θ̄, which is the maximum
level of leverage an investor can take:

U(W j
2 ) = E1[W j

2 ]− 1

2
γV ar1[W j

2 ], 0 ≤ θ ≤ θ̄, j = s, a. (5)

Speculators’ optimal leverage ratio for period 1 is given by

θ = max

0,min


p1µE(s1)−1−iB

γW s
1

− p1σ
2
E

p2
1σ

2
E + σ2

, θ̄


 . (6)

We assume that the liquidation value of DAI is independent of ETH returns and
E1[p2] = 1. Although arbitrageurs know that the objective ETH returns are inde-
pendent of the state s, a non-zero covariance arises endogenously due to speculators’
beliefs and their corresponding actions.

Arbitrageurs’ optimal DAI portfolio weight ω is:

ω =


max

{
0,

((1+iL)/p1−(1+r))p2
1

γWa
1 (1+iL)2σ2

}
, U+(W a

2 ) ≥ U−(W a
2 ),

−max

{
0,

θ̄(µA−θ̄(1−p1(1+r))+θ̄iB)
γWa

1 (σ2
E+θ̄2σ2)

}
, U+(W a

2 ) < U−(W a
2 ),

(7)

where

U+(W a
2 ) = max

ω1≥0
U(W a

2 ) (8)

U−(W a
2 ) = max

ω1<0
U(W a

2 ). (9)

Proof: See Appendix B.

4.3 Equilibrium

To clear the market, selling demand for DAI should equal to buying demand. In
period 1, speculators borrow θW s

1 of DAI and sell it to convert to ETH. At the same
time, arbitrageurs buy ω1W

a
1 DAI (or short sell if ω < 0) and, in addition to it, in

period 1 we have safe-haven demand D(s). Since there is no trading in periods 0
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and 2, we focus on the market clearing condition for period 1:

0 = −θW s
1 + ωW a

1 +D(s1) (10)

We solve the model numerically to from testable predictions about equilibrium
prices and quantities in the model. We assign the following parameter values: γ =

0.5, π = 0.5, W s
1 = $350, θ̄ = 0.66. We calibrate the rest of the primitive parameters

of the model to the sample. Specifically, we set daily rates of returns to: iB =

0.0324/252, iL = 0.0139/252, r = 0.015/252, σ = 0.0188, σE = 0.0459, µA = 1.0033,
µ(G) = 1.0668, µ(B) = 1.0033. Here we take µA being equal to the full sample
average of daily ETH return, while we take µ(G) equals to the 90-th percentile of
ETH return distribution. Finally, σE equals to the sample standard deviation of
ETH daily returns. Finally, we set D(G) = 0 and D(B) = $50. These values are
chosen to emphasize the safe-haven demand effect. Setting higher values D(G) will
reduce DAI peg discounts in the good state.

The choice of parameters π, γ andW s
1 is large extent arbitrary. We present in Ap-

pendix C the sensitivity analysis with respect to these parameters and demonstrate
that the model’s predictions are largely unaffected by this choice.

4.4 Testable implications

Baseline specification

Figure 3 plots equilibrium DAI prices for both good and bad states of nature (e.g.,
high and low ETH returns). In Panel A we plot DAI prices for a specification with
no safe-haven demand and only speculators and arbitrageurs trading in period 1.
In the bad state, speculators do not deposit ETH collateral due to their pessimistic
beliefs and the supply of DAI is zero in the secondary market; DAI prices trade at
par. In the good state, speculators deposit ETH collateral and borrow DAI in period
1. Market clearing requires that arbitrageurs take a long position in DAI to balance
the supply of DAI by speculators. To induce a long position, arbitrageurs buy DAI
at a discount.

Panel B of Figure 3 plots DAI prices for a specification with safe-haven demand
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and arbitrageurs but no speculators trading in period 1. Safe-haven demand is
endogenous to the state of ETH collateral, it is zero in the good state and positive
in the bad state. In the good state, we assume safe-haven demand is zero and
arbitrageurs do not need to supply DAI in the secondary market; DAI prices again
trade at par. In the bad state, DAI prices trade at a premium as arbitrageurs have
to absorb the positive safe-haven demand shock from public investors and short sell
DAI. Given shorting DAI is risky due to valuation effects of collateral, arbitrageurs
charge a premium and hence are willing to short sell only at high prices.

To create a two-sided distribution of stablecoin prices, we require a specification
that includes speculators, arbitrageurs and safe-haven demand. We label this the
full specification and plot the equilibrium DAI prices in Panel C. DAI prices in
period 1 correlate negatively with the states of nature of ETH collateral. When the
market is in the bad state, speculators do not leverage ETH aggressively due to their
pessimistic beliefs. As a result, arbitrageurs have to absorb the positive safe-haven
demand shock and short sell DAI. Given shorting DAI is risky due to valuation
effects of collateral, arbitrageurs charge a premium and hence are willing to short
sell only at high prices. In contrast, DAI trades at discount during the good state
due to excessive price pressure coming from speculators leveraging ETH and selling
DAI. Speculator supply of DAI exceeds safe-haven demand; therefore arbitrageurs
take a long position in DAI. To induce a long position, arbitrageurs purchase DAI
at a discount in the good state. In summary, the model generates a large premium
during the bad state and discount during the good state of nature.

Volatility of collateral

We next look at the stability of DAI price with respect to ETH volatility. Ar-
bitrageurs have to absorb this demand through a peg-price premium. To further
illustrate the effect of ETH volatility, Figure 4 presents comparative statics results
for period 1 DAI prices (Panel A), the expected DAI price (Panel B), DAI price
volatility (Panel C) and leverage ratios (Panel D). When volatility is low, specula-
tors borrow more DAI creating an excess supply of DAI in the market. Therefore,
arbitrageurs purchase DAI at a discount to induce a long position to clear the market.
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When volatility is high, speculators deleverage and arbitrageurs are required to short
sell DAI to clear the market in the bad state of the world. Consistent with short-
selling pressure on arbitrageurs, DAI prices in period 1 are higher in the bad state
as volatility of ETH increases, increasing volatility of the peg. The channel through
which DAI prices are affected is through deleveraging by speculators. In panel D,
we document a decline in the leverage ratio of speculators in response to increased
ETH volatility. To conclude, the stability of DAI deteriorates as the volatility of
ETH returns increases.

Stability rate

The stability rate iB of DAI price is set by the MakerDAO governance body to
target DAI prices. Figure 5 presents comparative statics results for period 1 DAI
prices (Panel A), the expected DAI price (Panel B), DAI price volatility (Panel C)
and leverage ratios (Panel D). As the stability rate increases, the reduction in DAI
borrowings by speculators requires arbitrageurs to short sell DAI to clear the market
in the bad state of the world. Arbitrageurs charge a premium and hence are willing
to short sell only at high prices, and increase peg volatility. Therefore, in principle,
the stability rate can be used as a policy instrument to control leverage and target
DAI prices. However, we note that quantitatively the stability rate has little effect
in stabilizing the peg. Holding all else constant, increasing the stability rate from
0% to 20% increases the expected DAI price by approximately 5 basis points based
on the numerical calibration.

Safe-haven demand shock

We now look at DAI prices in periods of low and high safe-haven public demand.
Figure 6 presents comparative statics results for period 1 DAI prices (Panel A), the
expected DAI price (Panel B), DAI price volatility (Panel C) and leverage ratios
(Panel D). Through this exercise, we capture in a stylized way the demand for DAI
due to its use in decentralized finance protocols and its role as a safe-haven. Ar-
bitrageurs have to absorb this demand during the bad state through a peg-price
premium. When public demand is low, arbitrageurs do not have to short sell very
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aggressively. Therefore, peg-premiums and volatility are higher in states of high
demand.

Finally, we show the comparative statics are robust to changes in system pa-
rameters in Appendix C. The probability of the good state π amplifies the slope
of comparative static figures, but does not change the sign (see Figures A3 - A5).
Coefficients γ and W s

1 amplify premia and discounts of DAI price deviations (see
Figure A6) and we choose their values in the baseline specification to approximately
reflect the magnitude of DAI price deviations in th edata.

4.5 Model extension: multiple collateral types
We extend the model by introducing the stablecoin USDC as an additional col-

lateral type to be used by arbitrageurs in stabilizing the peg. We assume that the
expected value of USDC returns is equal to E[RU ] = 1 + r given that the coin is
pegged to USD and we denote by V ar[RU ] = σ2

U the variance of its returns. Fur-
thermore, we assume that the USDC returns are uncorrelated with ETH and DAI
returns.18 Given our initial assumption that the speculators invest their entire wealth
into ETH and choose their optimal leverage ratio θ1, it is easy to see that they do
not invest to USDC and their portfolio choice remain the same as in (6). Arbi-
trageurs, however, have an opportunity to reduce their risk by borrowing DAI via
USDC collateral in addition to ETH. Hence, the arbitrageurs’ wealth in this case
changes according to the following dynamics:

W a
2 =


W a

1

(
ω(1 + iL)p2/p1 + (1− ω)(1 + r)

)
, ω ≥ 0,

W a
1

(
−ωE

θ̄
RE − ωURU + (ωE + ωU )(p2 − p1(1 + r) + iB)

+
(

1 + ωE

θ̄
+ ωU

)
(1 + r)

)
, ωU , ωE < 0.

(11)

Here, in the first equation, ω ≥ 0 is the amount of DAI arbitrageurs purchase as a
fraction of wealth, while in the second equation arbitrageurs short sell −ω fraction

18The assumption of zero correlation between the USDC and DAI returns can be justified by the
fact that the speculators do not have sentiments about USDC as such; moreover, we show below
that speculators do not use USDC as collateral which reduces the dependency of DAI on USDC
fluctuations. We provide a proof that speculators only use ETH collateral instead of USDC in
Appendix B.
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of their wealth, where ω = ωE + ωU < 0, ωE < 0 is the amount of DAI arbitrageurs
issue via ETH collateral and ωU < 0 is the amount of DAI arbitrageurs issue via
USDC collateral. A negative sign indicates that arbitrageurs sell DAI after issuing it.
Note that the maximum leverage ratio in USDC collateral is 1. The optimal fractions
of DAI borrowing via ETH and USDC collateral in the arbitrageurs’ portfolio are
determined as:

ω =

 max

{
0,

((1+iL)/p1−(1+r))p2
1

γWa
1 (1+iL)2σ2

}
, U+(W a

2 ) ≥ U−(W a
2 ),

ωU + ωE, U+(W a
2 ) < U−(W a

2 ),

(12)

where the precise values of ωE and ωU are provided in Appendix B.
To demonstrate the effect of introduction of multiple collateral types on DAI

prices, we calculate the equilibrium DAI price assuming the expected return on USDC
is equal to µU = 1 + r = 1.015 and the standard deviation of USD returns σU =

0.0013. Figure 7 plots DAI prices over the two periods for both good and bad states
of nature. With the introduction of the stable collateral type, we note that premiums
are smaller in the bad state relative to the baseline specification. The intuition is
as follows. When the market is in the bad state, speculators do not leverage ETH
aggressively due to their pessimistic beliefs. As a result, arbitrageurs have to absorb
positive public demand and short DAI. They can now short DAI through depositing
USDC collateral. An arbitrageur’s risk profile is reduced due to smaller volatility
of USDC as well as through diversification benefits as the two collateral types are
uncorrelated. Therefore, the extra arbitrage capital implies arbitrageurs charge a
smaller premium and hence are willing to short sell at lower premiums relative to
the baseline equilibrium with only ETH collateral. In the good state, however,
speculator supply of DAI exceeds public demand; therefore arbitrageurs take a long
position in DAI. To induce a long position, arbitrageurs purchase DAI at a discount
in the good state. The discount in a good state is similar to the discounts observed in
an equilibrium with only ETH collateral. The reason for this asymmetry is because
the addition of USDC collateral provides additional arbitrage capital for the case
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when arbitrageurs are required to short sell DAI, but not when they take a long
position. In summary, the model with USDC collateral generates smaller premiums
and peg-price deviations relative to single collateral case.

To illustrate the effect of USDC volatility, Figure 8 presents comparative statics
results for period 1 DAI prices (Panel A), the expected DAI price (Panel B), DAI
price volatility (Panel C), leverage ratio of speculators (Panel D) the share of USDC
collateral (Panel E). The comparative statics with respect to USDC volatility are
qualitatively similar to comparative statics with respect to ETH volatility. The dif-
ference is now that the capacity of arbitrageurs, as opposed to speculators, change
with the volatility of stable collateral. When USDC volatility is low, arbitrageurs
borrow more DAI creating an excess supply of DAI in the market. Therefore, arbi-
trageurs purchase DAI at a discount to induce a long position to clear the market.
When volatility is high, arbitrageurs are required to short sell DAI to clear the market
in the bad state of the world. Consistent with short-selling pressure on arbitrageurs,
DAI prices in period 1 are higher in the bad state as volatility of USDC increases,
increasing volatility of the peg. In panel D, the speculators always leverage to the
maximum in the good state. The share of stable collateral in panel E is defined as
ωU

ωU+ωE
, and is a decreasing function in USDC volatility. As the share of USDC collat-

eral falls, so does the ability of arbitrageurs to provide sufficient capital to eliminate
peg-price deviations, resulting in higher peg-price volatility.

5 Empirical evidence

5.1 Individual CDP data

We start our analysis with investigating investors’ behaviour in response to changes
in ETH returns, volatility and policy rates. In order to do this we use the entire his-
tory of CDP transactions for single collateral DAI. This records every transaction
made by an individual CDP, including amounts of ETH collateral deposited, DAI
borrowed, and the timestamp of each transaction. There are 8 types of actions an
investor can execute. Actions using ETH collateral involve opening and closing the
vault, depositing and withdrawing collateral, and an action to transfer ownership of
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the ETH vault across digital wallet addresses. Actions using DAI involve borrowing
and redeeming DAI tokens, and when the vault is under-collateralized it triggers a
"bite" action in which the collateral is liquidated to pay off the DAI loan.

We take the total stock of collateral ETHi,t locked in a CDP i at time t, and the
amount of borrowings DAIi,t locked in the CDP at time t. We then calculate the dol-
lar prices of DAI borrowings and ETH collateral, PDAI,t and PETH,t respectively, to
obtain the dollar value of each component. To prevent investors from over-leveraging,
the system has a "bite" action which is a liquidation event. A bite occurs when the
leverage ratio is above the threshold 2

3
× 100 per cent, at which positions are liqui-

dated.19 Table 3 documents summary statistics of DAI borrowing, ETH collateral,
the leverage ratio and liquidations. The sample contains a total of 11,718 CDPs.
The average leverage is 30.55%, well below the threshold leverage of 66.67%. 7,097
CDPs have liquidated at least once during their lifetime, with a maximum number
of liquidations of 14 for a single CDP.

We plot the time series of the leverage ratio, DAI borrowings and ETH collateral
for two individual CDPs in Figure 9. In the top panel (CDP id #5199), we plot the
time series for the CDP with the maximum DAI borrowings and ETH collateral over
the full sample. This CDP is an example of an investor who maintains a leverage ratio
averaging 30 to 40%. This is well below the threshold level of 66%. In the bottom
panel of Figure 9, we have an investor (CDP id #1272) that has the maximum
number of liquidation events (14) in our sample. For this CDP, we observe that the
leverage ratio calculated based on end-of-day ETH and DAI prices rises above the
threshold. In each case, this triggers a liquidation event, when DAI borrowings are
reset to zero and the investor’s ETH collateral value declines to pay off the debt.
ETH collateral value declines by more due to liquidation fees, that amount up to
15% of the value of DAI borrowings.

We plot the density of leverage ratios for CDPs over the full sample from January
2017 to November 2019 in Figure 10. In the top panel, we stratify our sample based

19For more details on the nomenclature of each CDP action, we refer readers to
MakerDAO documentation https://docs.makerdao.com/DAI.js/single-collateral-DAI/
collateralized-debt-position.
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on periods of extreme positive returns (greater than +2 std) and extreme negative
returns (less than -2 std). We find that periods of negative extreme events are
associated with a higher leverage ratio, all else equal, with the density shifted to
the right. The effects of extreme negative returns on system leverage is mechanical:
negative returns result in a decline in ETH collateral, and an increase in system
leverage, all else equal. In the bottom panel, we stratify the sample into high and
low interest rates, where high interest rates are above 18%, where the peak stability
rate is 20.52%. Low interest rates are below 1%. Noticeably, we find a bimodal
distribution with high interest rates, with a much higher density toward small loans
when interest rates are excessively high. This is intuitive: high DAI rates choke DAI
borrowings and contract leverage.

We now formalize determinants of CDP positions through a panel regression
specification in Equation (13):

Yi,t = αi + β1RETH,t + β2σETH,t + β3sfeet + ui,t, (13)

where the dependent variable is one of the following variables: the amount of DAI
borrowing (DAIi,t) by CDP i on day t, the amount of ETH collateral (ETHi,t) by
CDP i on day t, a dummy variable Bitei,t indicating a "bite" liquidation event for
CDP i at time t. The set of independent variables include the daily contemporaneous
ETH return (RETH,t), intra-day volatility of collateral (σETH,t) defined as the stan-
dard deviation of hourly returns, and the stability rate on DAI borrowing (sfeet).
Individual CDP fixed effects is captured by αi, and controls for idiosyncratic risk
preferences of an individual CDP. To create a panel with sufficient observations for
all CDPs, we filter CDPs that have transactions over 30 days in the sample.20 This
gives us a total of 456 individual CDPs with at least 30 daily observations each.

Independent variables σETH,t and sfeet are designed to capture contemporaneous
effects of collateral risk and the changes of stability rate respectively. We use RETH,t

as a proxy for speculators beliefs about the state of future ETH returns. We do not
use lagged return as a measure of future expected returns because the speculators

20Statistical bias can occur due to an unbalanced panel with individual CDPs having too few
observations.
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in our model are not assumed to be rational, hence we cannot rely on the rational
expectations hypothesis. We treat speculators more as short-term momentum or
positive feedback traders who react to contemporaneous changes in ETH to form
their speculative positions. Hence, positive contemporaneous returns are considered
as a signal to the good state while negative returns indicate the bad state.

Table 4 summarizes the results. A 1% increase in ETH returns increases DAI
borrowing and ETH collateral by 442 USD and 3,300 USD respectively (see columns
(1) and (2)). This matches the model mechanism: investors deposit more ETH
collateral and borrow more DAI in the good state, and borrow less DAI in the bad
state. A 1% increase in the stability fee reduces DAI borrowing and ETH collateral
by 620 USD and 1600 USD respectively. To estimate the effect of a change in
the explanatory variable on the probability of liquidation, we use a panel probit
specification in Column (3). A 1% increase in ETH returns reduces the probability
of liquidation by 0.075 percentage points. A 1% increase in ETH volatility and
stability rate increases the probability of liquidation by 0.13 and 0.02 percentage
points respectively.

5.2 Fundamentals of peg-price deviations

The model tests the channels through which collateral risk can generate peg-price
deviations and volatility. The first channel is speculative beliefs on the collateral.
Through the lens of the model, an increase in collateral risk reduces the capacity
of arbitrageurs to deposit ETH collateral, borrow DAI tokens and sell them in the
secondary market at a premium. The limits to arbitrage cause peg-price deviations
to persist and an increase in peg volatility. The prediction is that DAI peg-price
premiums occur precisely in periods of negative ETH returns. Second, declines in
the price of collateral result in liquidation events. The corresponding decline in
supply causes peg-prices to increase, all else equal. Third, premiums can occur in
periods of elevated demand, and are triggered in the bad state due to safe-haven
effects. We empirically test the contemporaneous correlation between the DAI price
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and ETH returns, liquidations and demand shocks in Equation (14):

Yt = β0 + β1RETH,t + β2σETH,t + β3sfeet + β4Lt + β5Dt + ut. (14)

Here, the outcome variable Yt is the DAI peg-price deviation ∆DAI,t, and the intra-
day volatility σDAI,t. Intra-day volatility is calculated as the square root of the av-
erage sum of squared hourly returns over the trading day. The explanatory variable
is RETH,t and σETH,t, which are measures of contemporaneous returns and intra-day
volatility of ETH. Similarly to the specification in Equation (13), we use contempora-
neous return to capture the model assumption of extrapolative beliefs of speculators
and to proxy signals about the good and bad states of future ETH returns. To
control for the effect of lagged returns, we test for feedback effects in Section 5.3
and negative ETH returns cause persistent peg-premiums. sfeet is the stability rate
on DAI borrowings (annualized). Lt measures aggregate liquidations of ETH collat-
eral in USD Million, and Dt measures the per cent change in aggregate secondary
market trading volume of DAI, and measures growth in aggregate trading volume in
exchanges. All variables are measured in basis points.

The results for peg-price deviations are summarized in Table 5. We first test
the effect of ETH returns, ETH volatility, and the stability fee in columns (3) to
(6). In the specification in column (3), a 1% (100 basis point) increase in ETH
returns is associated with a 3.7 basis point decline in DAI prices. This supports
the first model channel of speculative beliefs on collateral. The negative correlation
observed between DAI prices and ETH returns is due to the extrapolative beliefs of
speculators. In the bad state, investors reduce ETH collateral and DAI borrowings.
The reduction in supply of DAI pushes DAI prices up. In the good state, investors
increase ETH collateral and DAI borrowings. The increase in DAI supply reduces
the price, generating the negative correlation between ETH returns and DAI prices
in the data. In column (4), we find a 1% (100 basis point) increase in intra-day
volatility of ETH increases DAI prices by 0.5 basis points.

The second channel is liquidation events, which are triggered in extreme states
of collateral. Column (1) shows that liquidations are more likely to occur in periods
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of negative ETH returns, and in periods of increased ETH volatility. The specifi-
cation in column (6) regresses DAI price deviations on the measure of liquidations,
measured in millions USD. Consistent with our hypothesis: a 1 USD million increase
in liquidations is associated with an increase in the DAI price of 17.7 basis points.
Using this estimate, the 12 March 2020 liquidation auction of 10 USD Millions leads
to an approximate 180 basis point premium. DAI prices increased to 1.08 USD on
12 March. Therefore liquidations alone cannot account for the large premiums on
Black Thursday.

The third channel is that DAI premiums exhibit safe-haven properties (Baur
and Hoang, 2020). In specification (2), we find trading volume growth increases
in periods of negative ETH returns and high ETH volatility. The specification in
column (7) regresses DAI price deviations on the measure of demand. Consistent
with our hypothesis: a 1% increase in secondary market trading volume is associated
with an increase in the DAI price of 0.3 basis points. Specification (10) includes all
explanatory variables. We find the three key variables of ETH returns, liquidations
and safe-haven demand remain statistically significant.

In addition to peg-prices, the model predicts a positive relationship between peg
volatility and collateral risk. Figure 11 documents a scatter plot of DAI intra-day
volatility and ETH intra-day volatility, and documents a relationship between peg
stability is a function of collateral risk. The results for intra-day volatility are sum-
marized in Table 6 respectively. In contrast to our analysis on peg-prices, ETH
volatility is a stronger predictor of DAI volatility. In column (3), a specification
which controls for ETH returns, intra-day volatility and the stability rate, a 1% (100
basis point) increase in ETH volatility increases DAI volatility by 2.1 basis points,
all else equal. ETH returns and the stability fee have insignificant effects. Turning
to liquidations, column (4) regresses DAI volatility on liquidations. Consistent with
our hypothesis: a 1 million USD increase in liquidations results in 10.5 basis point
increase in volatility. We test the effect of change in DAI secondary market trading
volume on DAI volatility in columns (6) and (7). A 1% (100 basis point) increase in
DAI trading volume increases DAI peg volatility by 0.2 basis points. Finally, in col-
umn (8) which includes all variables, we find trading volume is the only statistically
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significant variable that corresponds to periods of elevated DAI volatility.

Decomposition of Channels

We have shown that each channel, speculative beliefs on the state of collateral,
liquidations and secondary market trading volume can explain peg-prices and intra-
day volatility. We can estimate the relative importance of each channel through
an analysis of variance (ANOVA) of our explanatory variables. In Figure 12, we
breakdown the decomposition of peg-price deviations and intra-day volatility into 5
explanatory variables, stating the per cent contribution to the explanatory sum of
squares of each variable. For peg-prices, speculative beliefs play an important role:
ETH returns is the most robust predictor of peg-price deviations explaining up to
51.1%, followed by liquidations at 30.5% and the stability fee at 13.2%. For intra-day
volatility, we find liquidations is the biggest contributor at 42.9%, followed by trading
volume at 42.7%, and ETH volatility at 13.7%. Taken together, our model channel
of speculative beliefs is therefore quantitatively significant in explaining DAI premi-
ums and the observed negative correlation between DAI prices and ETH returns.
In contrast, elevated DAI volatility can be explained by periods of high secondary
market trading volume and liquidations.

5.3 Dynamic effects of ETH returns, liquidations, trading vol-

ume and stability rate

In this section we test for the dynamic effects of ETH returns, liquidations, de-
mand and the stability rate on DAI prices and leverage using local projections (Jordà,
2005). The outcome variables include the DAI/USD price, aggregate liquidations,
ETH returns and the leverage ratio. The change in the outcome variable, Yt+h−Yt−1,
is projected on the explanatory variable Xt, in Equation (15). The specification al-
lows for feedback effects using lagged values of the explanatory variable and outcome
variable and additional controls Ct. We use 1 lag in the baseline specification. Trac-
ing the effects of βh provides an impulse response of a shock to the explanatory
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variable on the outcome variables.

Yt+h = α + βhXt +
L∑
k=1

δkXt−k +
L∑
k=1

γkYt−k−1 + Ct + ut, h = 0, 1, 2, ... (15)

The results are presented in Figure 13. In panel A we test the effect of a negative
100 basis point shock to ETH returns. We observe DAI premiums, and an initial
positive increase in liquidations and a decrease in DAI borrowings. This is consistent
with the empirical results using individual CDP data, where we find negative ETH
returns increase the probability of liquidation, and decrease DAI borrowings. Panel
B tests the effect of a 1 million USD shock in liquidations. The liquidation event on
12 March 2020 led to a fire-sale of ETH collateral to pay off the DAI debt. If the ETH
collateral is a substantial fraction of total ETH in circulation, then fire sales of ETH
collateral would cause further declines in ETH prices and a liquidation spiral, which
is put forward theoretically in Klages-Mundt and Minca (2020). We observe con-
temporaneous DAI premiums and a negative ETH return but that dissipates within
one day. Based on the results, we find weak evidence for a liquidation spiral. The
lack of persistent effects of liquidations on ETH returns is due to DAI in circulation
being a small fraction of the market cap of ETH. For example, based on data from
coinmarketcap.com, the market capitalization of ETH at the end of the sample on
12 March 2020 is approximately 12.4 USD Billion, and the market capitalization of
DAI is 0.11 USD Billion. The ratio of DAI to ETH market capitalization is less than
1%.

Panel C tests the effect of a 1% increase in aggregate secondary market trading
volume of DAI. We test for the feedback effects from a demand shock to DAI prices,
ETH returns and DAI borrowings. Our measure of demand is the growth in aggregate
trading volume of DAI in the secondary market. We observe weakly positive DAI
premiums and an increase in DAI borrowings, with insignificant effects on ETH
returns.

In Panel D, we trace the impulse response of the stability rate on the DAI price
and the leverage ratio.21 The stability rate, which is a cost on DAI borrowings, is

21We use the specification (15) with Xt = sfeet−sfeet−1, which is the change in the stability rate.
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implemented by the MakerDAO protocol as a way to control system leverage and DAI
prices. Consistent with our hypothesis, we find a positive effect on DAI prices over a
long horizon, with a 100 basis point hike in the stability rate increasing DAI prices
by approximately 5 basis points over the long-term, and reduces DAI borrowings by
8 million USD over a horizon of 30 days.22

5.4 Multiple collateral types and peg stability

The MakerDAO protocol introduced USDC collateral in response to the mass
liquidations and peg-price stability of the ETH price collapse on 12 March 2020. The
peg stability module (PSM) was introduced on 18 December 2020, and is indicated
by the dotted line in Figure 14. In the PSM, there is a smart contract that always
enforces a peg of 1 USDC=1 DAI. This allows users to swap USDC with DAI at
a 1:1 rate without needing to create a vault and deposit collateral. In this way,
there is no liquidation risk, however users need to make a one-off fee to use this.
We hypothesize the introduction of the USDC collateral and the swap arrangement
of USDC for DAI at a 1:1 rate increase peg stability through decreasing limits to
arbitrage. This increases the incentive for arbitrageurs to close peg-price deviations
using the PSM.23

We test four implications of the introduction of stable collateral that are directly
related to our model predictions. First, we hypothesize that the introduction of
USDC collateral led to an increase in peg-sustaining arbitrage. Second, we hypoth-
esize that the introduction of stable collateral attenuated correlations between the
risky ETH collateral and DAI prices, and increased the sensitivity of DAI to USDC
volatility. Third, we hypothesize that peg-prices are dynamically more stable follow-
ing the PSM. Fourth, we hypothesize the PSM attenuates the response of DAI prices

22We rationalize differences between the panel regression specification and the local projections due
to (i) cross-section versus aggregate system leverage and (ii) the time horizon of the effect.

23Note that investors can swap USDC for DAI in the event of a DAI premium. However, in the case
of risky ETH collateral, there is no similar arbitrage motive. This is because the realtime value
of the underlying collateral that would be released or absorbed is uncertain. A risky arbitrage
investor that borrows DAI via ETH collateral would lose money if the market value of ETH has
fallen over the period. Valuation losses on their ETH collateral are larger than DAI secondary-
market price deviations from the peg.
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to periods of extreme ETH returns and liquidation events.

Determinants of share of stable collateral

In this section we hypothesize that the share of stable collateral increases in
response to a relative increase in ETH volatility. Figure 14 plots the decomposition
of DAI borrowing by collateral type. To construct the share of stablecoin collateral,
we combine both stablecoin collateral and stablecoin borrowing via the PSM. This
accounts for up to 30% of DAI borrowing over the sample of 12 March 2020 to 31
March 2021. We define the variable sharet to be equal to DAI borrowings from
stable collateral types as a fraction of aggregate DAI borrowings. Stable collateral
types include stablecoins USDC, TrueUSD and Tether.

In order to determine the fundamentals driving the share of stablecoin collateral,
we estimate the following regression model:

sharet = α + β1RETH,t + β2σETH,t + β3σU,t + ut. (16)

In an alternative specification, we substitute σETH,t and σU,t with thier ratio σETH,t/σU,t.
The estimation results are summarized in Table 7. A 1% increase in USDC

volatility reduces the share of stable collateral by 1.7 basis points. While intra-day
volatility is insignificant in column (2), after controlling for intra-day volatility of
USDC in column (4) we find it is significant and positively associated with the share
of stable collateral. A 1% increase in the ratio of ETH to USDC volatility (see
columns (3) and (5)) increases the share of stable collateral by 0.14%. The results
support the model prediction that arbitrageurs choose to increase the share of USDC
collateral in response to an increase in ETH volatility (see Panel E of Figure 8).

ETH-DAI correlations Pre and Post USDC

Our second test is on whether the channels of DAI peg-prices become muted
following the introduction of stable collateral. We hypothesize that (i) the correlation
between ETH returns and DAI prices is attenuated and (ii) DAI volatility is more
strongly correlated with USDC volatility in the post USDC collateral period.

To test this, we divide our sample into a pre and post USDC collateral period
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based on the introduction of USDC collateral by the MakerDAO governance on 12
March 2020. We run the following baseline specifications:

∆DAI,t = β0 + β1∆DAI,t−1 + β2RETH,t + β3σETH,t + β4∆U,t + β5σU,t + β6sfeet + ut,

σDAI,t = β0 + β1σDAI,t−1 + β2RETH,t + β3σETH,t + β4∆U,t + β5σU,t + β6sfeet + ut,

where ∆U,t denotes the daily peg-price deviations of USDC prices (in basis points).
The estimation results are presented in Table 8. Columns (1) and (2) are esti-

mated for the pre-USDC collateral period, and columns (3) and (4) for the post-
USDC collateral period. Consistent with our hypothesis, we observe an attenuation
in the correlation between ETH returns and DAI prices from -0.054 to -0.012 in the
post USDC collateral period. This confirms the model prediction that the correlation
between bad and good states of ETH returns is weakened after the introduction of
stable collateral.24 We find USDC is a more significant predictor of DAI peg prices
and volatility than ETH in the post period. A 1 basis point increase in USDC volatil-
ity increases DAI peg-prices and volatility by 0.8 and 2.2 basis points respectively in
the post-period.

PSM and peg efficiency

We now test the introduction of the PSM on peg efficiency. Figure 15 plots the
stablecoin prices and intra-day volatility for USDC and DAI. A visual inspection
of Figure 15 shows that DAI peg-price deviations and intra-day volatility are larger
than USDC. While the volatility decline occurred immediately after the PSM launch
date, we note a decline in absolute peg-deviations began 2 to 3 months prior, which
is coincident with an increase in the share of USDC collateral in September 2020. To
assess the increase in peg efficiency, we test a Difference-in-difference (DiD) design
in Equation (17), where the outcome variable Yj,t is either the absolute level of peg
deviations, |∆j,t|, or the intra-day volatility of peg deviations σj,t for j = DAI, U ,

24We refer readers to Figure 7 which plots the model peg-prices before and after the introduction
of stable collateral. The introduction of stable collateral weakens the link between the bad ETH
state and DAI peg-premiums. The stable collateral type makes it easier for arbitrageurs to short
sell DAI at smaller premiums.
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both measured in basis points. More specifically, we estimate

Yj,t = α0 + β Tj + γ postt + δ postt × Tj + uj,t, (17)

where the indicator for treatment Tj takes on a value of 1 for DAI and 0 for USDC,
and postt take on a value 0 for t prior to 18 December 2020 (the date of the PSM
launch) and 1 afterwards. The coefficient δ measures the net effect of peg stabilization
relative to any trends observed in USDC.

The results are summarized in Table 9. We observe on average a 67.9 basis point
decline in the absolute level of peg deviations, and a decline in intra-day volatility
of 71.3 basis points. The results of our differences-in-differences analysis for the full
sample are reported in columns (3) and (4) of Table 9. There is a net convergence in
the stability of peg deviations during the post PSM period, with a DiD coefficient of
post)t×Tj of -83.8 basis points. Similarly, we observe a decline in intra-day volatility
of 72.0 basis points relative to USDC. The results are robust to using a balanced
sample, starting on 8 January 2020. In columns (5) and (6), we find a decline in the
absolute size of peg-price deviations of 101.8 basis points, and a decline in intra-day
volatility of 61.1 basis points, relative to USDC over the balanced sample. The results
suggest the increase in peg efficiency is attributed to reduced limits to arbitrage. The
swap arrangement enables arbitrageurs to short sell DAI when it trades at a premium
through swapping USDC for DAI. In Appendix 5.4 we provide further econometric
tests to show the peg is dynamically more stable in the post PSM period.

Asymmetric increase in peg efficiency

We have shown an increase in the efficiency of the peg following the PSM. Our
model shows that this increase is asymmetric: peg premiums are compressed in an
equilibrium with stable collateral as arbitrageurs can now diversify risk when short-
selling DAI. Histograms of the distribution of peg-price deviations is plotted in Figure
16, and shows the distribution is skewed toward peg premiums in the pre-PSM but
becomes more symmetric in the post-PSM. In Table 10, we document summary
statistics of peg-price deviations. The distribution is much more compact in the post
peg stability mechanism (PSM) period. This is evident in a lower range of peg-price
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deviations, ranging from -20 to 50 basis points in the post PSM period, in contrast
to a range of -84.8 to 800 basis points during the pre PSM period. The half-life of
peg-price deviations has reduced from 5.95 days to 1.76 days.25

To test the stabilizing properties of the pre and post-PSM periods, we conduct a
self-exciting threshold auto-regressive (SETAR) analysis. In Equation (18), peg-price
deviation ∆DAI,t is characterized by three auto-regressive processes. Each process
is based on a low, middle and high regime, where the low regime is given by the
threshold of deviations ranging from [−∞, ∆L], the middle regime is [∆L,∆U ] and
the high regime is [∆U ,∞]. The middle regime can be interpreted as a band of
inaction in which peg-price deviations are sufficiently small compared to transaction
costs and the risk of conducting arbitrage.

∆DAI,t =


ρL∆DAI,t−1 + εt, ∆DAI,t−1 < ∆L

ρM∆DAI,t−1 + εt, ∆L ≤ ∆DAI,t−1 ≤ ∆U

ρU∆DAI,t−1 + εt, ∆DAI,t−1 > ∆U

(18)

We estimate the SETAR for the sub-samples pre and post PSM. Our results are
presented in Table 11. There is a large band of inaction for peg-premiums ranging
from 24 to 290 basis points, in which peg deviations are persistent and approximate
a random walk. This is consistent with a significant risk in short selling DAI in
response to peg-price premiums. Once premiums exceed 290 basis points, the model
estimates a half-life of 2.51 days. In the post-PSM sample, the band of inaction is
much smaller, [∆L,∆U ] is now between 1 and 27 basis points. The addition of a swap
arrangement with USDC facilitates a risk-free arbitrage opportunity by swapping
USDC for DAI when DAI trades at a premium. Therefore for deviations in excess of
27 basis points, the half-life is only 0.78 days. In summary, we observe an increased
ability of arbitrageurs to short sell DAI in the post PSM, leading to a compression
of peg premiums and an increase in peg stability.

25To measure the half-life, we run an auto-regressive process of order 1 on the deviations, ∆DAI,t =

ρ∆DAI,t−1 +ut. The half-life, or the time it takes for a shock to dissipate by 50%, is T = log(0.5)
log(ρ) .
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PSM and liquidations

Our model predicts that post PSM, the peg is more resilient to periods of extreme
collateral returns. We present a comparative case study of the DAI price, liquidations
and the ETH price during the 19 May 2021 crypto crash, in which cryptocurrencies
like ETH dropped by approximately 30%. We plot in Figure 17 the USD price
response, the ETH price and DAI liquidations. Compared to the Black Thursday
crash on 12 March 2020, DAI exhibits much smaller premiums, with a peak of 40-50
basis points in May 2021, in contrast to 800 basis points in March 2020 (see Figure
1 for plots of DAI, ETH prices and liquidations during March 2020). Liquidations of
ETH are correspondingly smaller in the latter period at 0.4 USD million compared
to 10 USD million. Panel C of Figure 17 confirms our hypothesis: the decline in
ETH returns and increased volatility triggered a rebalancing of DAI creation through
investors swapping USDC for DAI via the PSM. The rebalancing was quantitatively
significant: DAI borrowing via ETH collateral fell from a peak of 2.75 to 1.75 USD
Billion over the month of May 2021, and borrowing via the PSM increased from 1 to 2
USD Billion over this period. The PSM reduced limits to arbitrage and consequently
increased stability of the peg.

6 Conclusion
In this paper we investigate the importance of collateral risk for stability of the

DAI stablecoin peg. To shed light on the fundamentals of peg-price dynamics, we
introduce a model setup that has three agents: investors that deposit risky collateral
and borrow a fraction as DAI tokens, arbitrageurs that short DAI when the peg
trades at a premium, and a demand shock for DAI in period 1 from investors that
seek DAI to earn savings and gain utility from its use in DeFi applications. In
equilibrium, DAI peg-prices are dependent on investors’ beliefs about the state of
the collateral. The model generates peg premiums (discounts) in the bad (good)
state, and a positive relationship between volatility of the peg and volatility of the
collateral. Peg-deviations are dampened through the introduction of stable collateral
types for arbitrageurs to borrow against. The model highlights importance of both
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channels to generate realistic discounts and premia of DAI price: state-dependent
speculative behaviour and safe-haven demand.

We provide empirical evidence to support model predictions. Using the universe
of collateralized debt positions, we find that DAI borrowings and ETH collateral
deposited by speculators are lower in periods of extreme negative returns and high
volatility of collateral. Second, we turn to fundamental determinants of DAI prices.
We find DAI peg-prices are determined through three channels: speculative beliefs
on the state of collateral, liquidations and safe-haven demand. Consistent with our
channel of speculative beliefs, we observe a negative correlation between DAI prices
and ETH returns. A decomposition analysis reveals that the state of ETH collateral,
via ETH returns, is the most important determinant for DAI prices, whereas liquida-
tions and demand contribute more to the volatility of the peg. Third, we document
a trend toward peg-price stability since the advent of the peg stability module in
December 2020. Stable collateral increases the capacity for arbitrageurs to step in
and absorb differences between the primary and secondary market rates.

For future research, we point to implications for regulations of stablecoins with
cryptocurrency collateral. Both the model and empirical evidence point to stable
collateral as a necessary condition for a stable peg. While alternative tools like rates
on borrowing the stablecoin can in principle induce an effective change in supply,
risky collateral leads to an increased volatility of the peg. A tokenized digital version
of the dollar, such as a central bank digital currency issued by the Federal Reserve,
can in principle provide a dominant solution for stable collateral that minimizes
custodial risk. The relationship between volatility of the peg and collateral risk
can also shed light on how global stablecoins should be designed. Our bottom line:
stablecoins need to be backed by liquid, risk-free reserves.
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Figures

Figure 1: DAI price and liquidations response to negative price shock of ETH in March 2020
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DAI price in USD, ETH price in USD and DAI liquidations during the month of March 2020. Shaded areas
indicate the period when the price of ETH fell approximately 50% from 12 March 2020 to 13 March 2020.
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Figure 2: DAI price, ETH price, Leverage, Stability rate
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This figure plots Panel A: DAI price, Panel B: ETH price Panel C: leverage in ETH vaults, and Panel D: the
interest rate on DAI borrowings. Sample period is from 13 April 2018 to 31 March 2020.

47



Figure 3: DAI prices across good and bad states of ETH collateral
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This figure plots DAI prices for both good and bad states of nature. Panel A plots DAI prices for a specification
with no safe-haven demand (D(G) = D(B) = 0) and only speculators and arbitrageurs trading in period
1. Panel B plots DAI prices for a specification with safe-haven demand (D(B) = $50, D(G) = $0) and
arbitrageurs but no speculative trading in period 1 (µE(G) = µE(B) = µA). Panel C plots DAI prices for
the full specification with safe-haven demand, speculative beliefs and arbitrageurs present. The rest of the
primitive parameters are as follows: γ = 0.5, π = 0.5, W s

1 = $350, θ̄ = 0.66, σ = 0.0188, iB = 0.0324/252,
iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of
the parameters in the models are computed numerically by optimizing the expected utilities (5).
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Figure 4: DAI prices, volatility and leverage across different values of ETH volatility
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Panel D: DAI Leverage (good state)

This figure plots DAI prices, volatility and leverage as a function of ETH volatility, holding all other parameters
constant. Panel A corresponds to DAI prices in the good and bad states respectively. Panel B corresponds
to the expected DAI price, with the good and bad states occurring with probability 0.5. Panel C corresponds
to peg-price volatility, calculated as the standard deviation of peg-prices across the two states of collateral.
Panel D corresponds to DAI leverage, calculated in per cent. The primitive parameters are as follows: γ = 0.5,
π = 0.5, W s

1 = $350, D(B) = $50, D(G) = $0, θ̄ = 0.66, σ = 0.0188, iB = 0.0324/252, iL = 0.0139/252,
r = 0.015/252, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters in the models are
computed numerically by optimizing the expected utilities (5).
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Figure 5: DAI prices, volatility and leverage across different values of stability rate
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Panel D: DAI Leverage (good state)

This figure plots DAI prices, volatility and leverage as a function of the interest rate on DAI borrowings, holding
all other parameters constant. Panel A corresponds to DAI prices in the good and bad states respectively.
Panel B corresponds to the expected DAI price, with the good and bad states occurring with probability 0.5.
Panel C corresponds to peg-price volatility, calculated as the standard deviation of peg-prices across the two
states of collateral. Panel D corresponds to DAI leverage, calculated in per cent. The primitive parameters
are f follows: γ = 0.5, π = 0.5, W s

1 = $350, D(B) = $50, D(G) = $0, θ̄ = 0.66, σ = 0.0188, σE = 0.0459,
iL = 0.0139/252, r = 0.015/252, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters
in the models are computed numerically by optimizing the expected utilities (5).
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Figure 6: DAI prices, volatility and leverage across different values of safe-haven demand
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Panel D: DAI Leverage (good state)

This figure plots DAI prices, volatility and leverage as a function of safe-haven demand, holding all other
parameters constant. Panel A corresponds to DAI prices in the good and bad states respectively. Panel B
corresponds to peg-price volatility, calculated as the standard deviation of peg-prices across the two states
of collateral. Panel C corresponds to DAI leverage, calculated in per cent. The primitive parameters are as
follows: γ = 0.5, π = 0.5, W s

1 = $350, D(G) = $0, θ̄ = 0.66, σ = 0.0188, σE = 0.0459, iB = 0.0324/252,
iL = 0.0139/252, r = 0.015/252, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters
in the models are computed numerically by optimizing the expected utilities (5).
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Figure 7: DAI price for single and multiple collateral system
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This figure plots DAI prices for both good and bad states of nature. Solid lines is for the specification with
only unstable (ETH) collateral, and is a full specification with safe-haven demand and when speculators and
arbitrageurs are both present. Dotted line indicates a specification with multiple collateral. In this case,
while speculators have access to ETH collateral, arbitrageurs have access to USDC collateral with volatility
σU = 0.0013. The primitive parameters are as follows: γ = 0.5, π = 0.5, W s

1 = $350, D(B) = $50, D(G) = $0,
θ̄ = 0.66, σ = 0.0188, iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033,
µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters in the models are computed numerically by
optimizing the expected utilities (5).
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Figure 8: DAI prices, volatility, leverage and share of USDC collateral versus USDC volatility
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Panel E: Share of USDC Collateral

This figure plots DAI prices, volatility, leverage and the share of USDC collateral as a function of USDC
volatility, holding all other parameters constant. Panel A corresponds to DAI prices in the good and bad
states respectively. Panel B corresponds to the expected DAI price, with the good and bad states occurring
with probability 0.5. Panel C corresponds to peg-price volatility, calculated as the standard deviation of peg-
prices across the two states of collateral. Panel D corresponds to DAI leverage, calculated in per cent. Panel
E corresponds to the share of stable collateral as a ratio to total collateral deposited by both speculators and
arbitrageurs. The primitive parameters are as follows: γ = 0.5, π = 0.5, W s

1 = $350, D(B) = $50, D(G) = $0,
θ̄ = 0.66, σ = 0.0188, σE = 0.0459, iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252, µA = 1.0033,
µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters in the models are computed numerically by
optimizing the expected utilities (5).
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Figure 9: Time Series of Leverage Ratio, DAI borrowings and ETH collateral for two CDPs
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Top panel: Time series of leverage ratio (left) and DAI borrowings and ETH collateral for CDP #5199.
Bottom panel: Time series of leverage ratio (left) and DAI borrowings and ETH collateral for CDP #1272.
CDP transactions are aggregated to a daily frequency, with sample period from 13 April 2018 to 18 November
2019.
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Figure 10: Distribution Conditional on ETH Returns
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This figure plots the kernel density of the leverage ratio for all CDPs. Top panel: Distributions are conditioned
on periods of high and low returns of ETH, where high returns corresponds to returns that exceed +2std of
ETH returns, and low returns corresponds to returns that are less than -2 std of ETH returns. Bottom
panel: Distributions are conditioned on periods of high and low interest rates. High interest rates correspond
to the distribution of CDP leverage when the DAI stability rate reached its peak of 19.0%. Low interest
rates correspond to the distribution of CDP leverage when the DAI stability rate is at the floor of 0%. CDP
liquidations, when the action is "bite" and DAI borrowings are zero, are excluded from the sample. CDP
transactions are aggregated to a daily frequency, with sample period from 13 April 2018 to 18 November 2019.
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Figure 11: DAI and ETH intra-day volatility
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This figure plots a scatter plot of intra-day volatility of DAI and ETH. Intra-day volatility is measured in basis
points. Price data for currencies obtained from coinapi and use intra-day prices from the Bitfinex exchange.
Sample period is from 18 November 2019 to 31 March 2021, corresponding to the period of Multi Collateral
DAI.
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Figure 12: Contribution of fundamentals to peg-rice and volatility
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This figure plots a pie chart showing the contribution of fundamentals to peg-price and volatility. Variables
include ETH returns and volatility, the stability rate, liquidations of ETH collateral and demand (measured by
the per cent change in secondary market trading volume of DAI). The decomposition is based on an ANOVA,
which reports the sum of squares explained by each variable. In calculations, the percentage contribution is
the sum of squares contribution of each variable.
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Figure 13: Effect of ETH returns, liquidations, DAI trading volume and stability rate on DAI
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Panel C: DAI trading volume
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Panel D: Stability rate
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This figure illustrates the response of DAI price and leverage to: Panel A: A negative 100 basis point shock
to ETH returns, Panel B: 1 million USD Liquidations, Panel C: 1% change in DAI trading volume, Panel D:
1% change in stability rate fee, using the method of local projections. Leverage ratio is based on aggregate
measures of DAI borrowings and ETH collateral. Sample period is from 18 November 2019 to 31 March 2021,
corresponding to the period of Multi Collateral DAI. 1 lag is included in the baseline specification. Gray area
denotes 90% confidence interval using White heteroscedasticity-robust standard errors.
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Figure 14: DAI/USD prices
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Left panel: This figure plots the deviations of the DAI/USD peg from parity. A positive deviation indicates
DAI/USD trades at a premium. Sample period is from 18 November 2019 to 31 March 2020. Right panel: This
figure plots the breakdown of total DAI borrowing by Vault. DAI borrowing is denominated in USD Million.
Vault types include ETH, USDC, WBTC (synthetic BTC) and other. Sample period is from 18 November
2019 to 31 March 2020.
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Figure 15: DAI vs. USDC: Absolute peg-price deviations and volatility
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This figure plots average monthly stablecoin prices and intra-day volatility for the treatment (DAI) and the
control group stablecoins. The treatment stablecoin is DAI. The control stablecoin is USDC. The red dotted
line indicates the date of structural change of 18 December 2020 used in the baseline specification. Sample is
13 April 2018 through to 31 March 2021.
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Figure 16: Distribution of peg-price deviations, pre- and post-PSM
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Figure plots a histogram of deviations of the DAI/USD price from parity for sub-samples corresponding to pre
and post PSM. A positive deviation indicates DAI/USD trades at a premium. The pre PSM sample is from
18 November 2019 to 18 December 2020. The post PSM sample is from 18 December 2020 to 31 March 2021.
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Figure 17: DAI price, liquidations and source of collateral in response to negative price shock
of ETH in May 2021
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Tables

Table 1: Summary statistics

count mean std min 25% 50% 75% max

RETH (%) 798.0 0.17 5.80 -58.22 -2.34 0.11 3.02 23.31
∆DAI (USD) 798.0 0.01 0.01 -0.04 0.00 0.01 0.01 0.08
Stability Rate (%) 798.0 3.24 6.34 0.00 0.02 0.04 2.50 20.52
Leverage Ratio (%) 798.0 29 5 17 26 30 33 44

This table presents summary statistics of key variables in empirical analysis. RETH measures daily returns
in ETH in per cent. ∆DAI measures deviations from the peg and are expressed in USD (1 USD=100 basis
points). The stability rate is an interest rate on DAI borrowing and is expressed in per cent (annualized). The
leverage ratio is the ratio of total DAI borrowings to total ETH collateral. Sample period is from 13 April
2018 to 31 March 2021.

Table 2: Correlation matrix

RETH ∆DAI Stability Rate Leverage Ratio

RETH 1.000 -0.044 -0.015 -0.209
∆DAI -0.044 1.000 -0.190 0.250
Stability Rate -0.015 -0.190 1.000 -0.340
Leverage Ratio -0.209 0.250 -0.340 1.000

This table presents pairwise correlation of key variables in empirical analysis. RETH measures daily returns
in ETH in per cent. ∆DAI measures deviations from the peg and are expressed in USD (1 USD=100 basis
points). The stability rate is an interest rate on DAI borrowing and is expressed in per cent (annualized). The
leverage ratio is the ratio of total DAI borrowings to total ETH collateral. Sample period is from 13 April
2018 to 31 March 2021.
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Table 3: CDP summary statistics

count mean std min 25% 50% 75% max

DAI (USD Million) 11,718 0.015 0.16 0.00 0.00 0.00 0.002 7.87
ETH (USD Million) 11,718 0.04 0.50 0.00 0.00 0.00 0.005 24.96
Leverage Ratio (%) 11,718 30.55 19.01 0.00 13.43 33.02 44.79 84.49
Liquidations 7,097 1.06 0.40 1 1 1 1 14

This table presents summary statistics of key variables of individual CDP data. DAI and ETH measure the
total DAI borrowings and ETH collateral of each individual CDP, measured in USD million. The leverage
ratio is the ratio of total DAI borrowings to total ETH collateral. Liquidations measures the number of times
a CDP leverage ratio is above the threshold governed by the liquidation price. Only CDPs with at least 30
days of observations are included in the sample. Sample period is from 13 April 2018 to 17 November 2019,
which corresponds to the period of single collateral DAI.
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Table 4: Determinants of CDP DAI borrowing, ETH collateral, leverage and liquidation event

DAIi,t ETHi,t Bitei,t

DAIi,t−1 0.993***
(0.005)

ETHi,t−1 0.976***
(0.004)

RETH,t 0.460** 3.434** -0.075***
(0.221) (1.441) (0.006)

σETH,t -0.254 0.260 0.126***
(0.347) (1.952) (0.011)

sfeet -0.632* -1.684** 0.019***
(0.332) (0.735) (0.005)

Intercept 9.178*** 24.311** -4.09***
(2.633) (11.248) (0.129)

Nr. obs. 11,197 11,197 25,125
Nr. ids. 456 456 456
id FE Yes Yes Yes

This table presents the estimation results of the following panel regression:

Yi,t = αi + β1RETH,t + β2σETH,t + β3sfeet + ui,t,

where the dependent variable Yi,t is one of the following variables: DAIi,t (the individual DAI borrowing
at time t of CDP i in thousands of USD), ETHi,t (the individual ETH collateral of CDP i in thousands
of USD), and Bitei,t (a dummy variable indicating a "bite", which is a liquidation event at time t of CDP
i). Explanatory variables include daily ETH returns RETH,t (in per cent), daily intra-day volatility of ETH
returns σETH,t (in per cent), the interest rate on DAI borrowings sfeet (in per cent per annum). The sample
runs from 13 April 2018 to 17 November 2019, which corresponds to the period of single collateral DAI. For
Bitei,t dependent variable we use a panel probit specification. White heteroscedasticity-robust standard errors
are reported in parentheses, and are clustered at the individual CDP level. All specifications include CDP
fixed effects. *** denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 5: DAI peg-price fundamentals

(1) (2) (3) (4) (5) (6) (7) (8)
Lt Dt ∆DAI,t

∆DAI,t−1 0.818*** 0.796*** 0.758*** 0.786*** 0.809*** 0.765***
(0.027) (0.028) (0.031) (0.028) (0.028) (0.030)

RETH,t -0.312*** -0.943** -0.037*** -0.029***
(0.111) (0.385) (0.005) (0.005)

σETH,t 1.532*** 3.641*** 0.013 -0.015
(0.134) (0.749) (0.010) (0.011)

sfeet 0.102 -0.243 -0.035*** -0.038***
(0.104) (0.784) (0.011) (0.011)

Lt 0.018*** 0.014***
(0.004) (0.004)

Dt 0.003*** 0.002***
(0.001) (0.0006)

Intercept -538.4*** -659.5 19.03*** 12.39** 30.13*** 17.40*** 14.88*** 35.81***
(53.20) (409.7) (3.491) (5.393) (5.483) (3.621) (3.677) (6.269)

R-sq. 40.5% 6.2% 68.5% 64.3% 65.0% 66.0% 65.8% 70.6%
Nr. obs. 454 454 454 454 454 454 454 454

This table presents the estimation results of the following regression models:

Lt = a0 + a1RETH,t + a2σETH,t + a3sfeet + ut, Column (1),
Dt = b0 + b1RETH,t + b2σETH,t + b3sfeet + ut, Column (2),

∆DAI,t = β0 + β1∆DAI,t−1 + β2RETH,t + β3σETH,t + β4sfeet + β5Lt + β6Dt + ut, Columns (3)-(8),

where the dependent variables in columns (1) and (2) are Lt (value of liquidations in thousands of USD) and
Dt (the aggregate growth in DAI trading volume across major exchanges in basis points) respectively. The
dependent variable in columns (3) to (8) is ∆DAI,t (the DAI peg-price deviation pDAI,t − 1, in basis points).
Explanatory variables include daily ETH returns RETH,t (in basis points), daily intra-day volatility of ETH
returns σETH,t (in basis points), the interest rate on DAI borrowings sfeet (in per cent per annum), the value
of liquidations Lt (in thousands of USD) and aggregate growth in DAI secondary market trading volume Dt

(in basis points). The sample runs from 18 November 2019 to 31 March 2021, corresponding to the period
of Multi Collateral DAI. White heteroscedasticity-robust standard errors are reported in parentheses. ***
denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 6: DAI volatility fundamentals

(1) (2) (3) (4) (5) (6)
σDAI,t

σDAI,t−1 0.642*** 0.624*** 0.633*** 0.634*** 0.646*** 0.635***
(0.036) (0.037) (0.037) (0.036) (0.036) (0.037)

RETH,t -0.007 -0.002
(0.005) (0.005)

σETH,t 0.023** 0.004
(0.010) (0.012)

sfeet 0.013 0.010
(0.010) (0.010)

Lt 0.010*** 0.007
(3.524) (4.554)

Dt 0.002*** 0.002***
(0.0006) (0.0006)

Intercept 34.74*** 25.72*** 31.77*** 34.03*** 32.24*** 29.07***
(4.365) (5.583) (4.786) (4.329) (4.362) (6.206)

R-sq. 40.9% 41.4% 40.9% 41.8% 42.1% 42.5%
Nr.obs. 454 454 454 454 454 454

This table presents the estimation results of the following regression models:

σDAI,t = β0 + β1σDAI,t−1 + β2RETH,t + β3σETH,t + β4sfeet + β5Lt + β6Dt + ut,

where the dependent variable σDAI,t measures the daily intra-day volatility of DAI prices (in basis points).
Explanatory variables include daily ETH returns RETH,t (in basis points), daily intra-day volatility of ETH
returns σETH,t (in basis points), the interest rate on DAI borrowings sfeet (in per cent per annum), the value
of liquidations Lt (in thousands of USD) and aggregate growth in DAI secondary market trading volume Dt

(in basis points). The sample runs from 18 November 2019 to 31 March 2021, corresponding to the period
of Multi Collateral DAI. White heteroscedasticity-robust standard errors are reported in parentheses. ***
denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 7: Determinants of the share of stable collateral share

(1) (2) (3) (4) (5) (6)
sharet

RETH,t 0.002 0.001 0.002
(0.002) (0.001) (0.002)

σETH,t -0.002 0.005**
(0.003) (0.0025)

σU,t -1.727*** -1.766***
(0.110) (0.112)

σETH,t
σU,t

0.0014*** 0.0014***

(0.0002) (0.0002)
Intercept 23.41*** 24.47*** 42.86*** 15.93*** 40.83*** 15.76***

(0.961) (1.703) (1.438) (1.335) (1.702) (1.341)
R-sq. 0.28% 0.11% 39.1% 13.2% 39.9% 13.6%
Nr. obs. 385 385 385 385 385 385

Table presents the estimation results of the regression of the share of stable collateral on ETH returns and
ETH and USDC intra-day volatility:

sharet = α+ β1RETH,t + β2σETH,t + β3σU,t + ut.

where the dependent variable sharet measures the share of total stable collateral deposited in vaults: this
includes stablecoins USDC, Tether and TrueUSD (in percent). The explanatory variables include daily ETH
returns RETH,t (in basis points), daily intra-day volatility of USDC (σU,t) and ETH (σETH,t) returns (in basis
points) as well as the ratio of these volatilties. The sample runs from 12 March 2020 to 31 March 2021. White
heteroscedasticity-robust standard errors are reported in parentheses. *** denotes significance at the 1% level,
** at the 5% level, and * at the 10% level.
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Table 8: DAI-ETH return correlations in the pre- and post-USDC collateral periods

(1) (2) (3) (4)
∆DAI,t ∆DAI,t σDAI,t σDAI,t

∆DAI,t−1 0.605*** 0.707***
(0.092) (0.031)

σDAI,t−1 0.221** 0.469***
(0.086) (0.042)

RETH,t -0.054*** -0.012** 0.045*** -0.003
(0.010) (0.005) (0.015) (0.004)

σETH,t 0.130*** -0.021** 0.177*** 0.016*
(0.023) (0.010) (0.033) (0.008)

∆U,t 0.728 -1.505*
(0.969) (0.816)

σU,t 0.802* 2.227***
(0.461) (0.396)

sfeet 0.785 -7.658*** 9.863** -5.562***
(2.579) (1.760) (4.098) (1.459)

Intercept -39.25** 40.913*** -21.85 20.433***
(15.02) (6.685) (21.86) (5.695)

R-sq. 70.7% 44.7% 41.1% 57.8%
Nr. obs. 115 383 115 383
Pre USDC Yes No Yes No
Post USDC No Yes No Yes

This table presents the estimation results of the following regression models:

∆DAI,t = β0 + β1∆DAI,t−1 + β2RETH,t + β3σETH,t + β4∆U,t + β5σU,t + β6sfeet + ut, Columns (1) and (2),
σDAI,t = β0 + β1σDAI,t−1 + β2RETH,t + β3σETH,t + β4∆U,t + β5σU,t + β6sfeet + ut, Columns (3) and (4),

where the dependent variables in columns (1) and (2) is ∆DAI,t (the DAI peg-price deviation pDAI,t − 1, in
basis points) and in columns (3) and (4) is the daily intra-day volatility of DAI prices σDAI,t (in basis points).
Explanatory variables include daily ETH returns RETH,t (in basis points), daily intra-day volatility of ETH
returns σETH,t (in basis points), daily peg-price deviations of USDC prices ∆U,t (in basis points), the daily
intra-day volatility of USDC per-price deviations σU,t (in basis points), the interest rate on DAI borrowings
sfeet (in per cent per annum). The sample is divided into the Pre-USDC Collateral (columns (1) and (3)) and
Post-USDC Collateral period (columns (2) and (4)). The Pre-USDC Collateral sample runs from 18 November
2019 to 11 March 2020. The Post-USDC Collateral sample runs from 12 March 2020 to 31 March 2021. White
heteroscedasticity-robust standard errors are reported in parentheses. *** denotes significance at the 1% level,
** at the 5% level, and * at the 10% level.
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Table 9: Tests of a structural break in DAI peg deviations

(1) (2) (3) (4)
|∆| σ |∆| σ

postt -53.73*** -39.90*** -2.732*** -9.295***
(3.439) (3.250) (0.595) (0.546)

Ti 114.63*** 97.356***
(5.139) (4.173)

postt × Ti -101.83*** -61.07***
(5.234) (4.702)

Intercept 60.85*** 63.71*** 3.454*** 14.97***
(3.374) (2.794) (0.592) (0.489)

R-sq. 7.75% 6.15% 46.4% 47.9%
Nr.obs. 897 897 897 897

Table presents estimation results of the following difference-in-difference regression:

Yj,t = α0 + βTj + γ postt + δ postt × Tj + uj,t,

where the outcome variable Yj,t is either the absolute level of peg deviation |∆j,t| (columns (1) and (3)), or the
intra-day volatility of peg deviations σj,t (columns (2) and (4)) for j = DAI,U , both measured in basis points.
The post dummy postt takes a value of 1 from 18 December 2020, which is the launch date of the PSM (swap
arrangement in which USDC is swapped with DAI at a 1:1 rate) and 0 otherwise. The Treatment dummy Tj
takes a value of 1 for DAI/USD, and 0 for USDC/USD (control-group currency). The sample is based on the
balanced panel from 8 January 2020 to 31 March 2021. White heteroscedasticity-robust standard errors are
used in estimation. *** denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 10: Summary statistics of peg deviations pre- and post-PSM periods

period count mean std min 25% 50% 75% max half-life (days)

Pre-PSM 396.0 101.95 98.83 -84.8 33.75 85.5 153.5 800.0 5.95
Post-PSM 103.0 11.27 12.38 -20.0 3.0 11.0 20.0 50.0 1.76

Table presents summary statistics of peg deviations in basis points. A positive deviation indicates DAI/USD
trades at a premium. The pre PSM sample is from 18 November 2019 to 18 December 2020. The post PSM
sample is from 18 December 2020 to 31 March 2021.

Table 11: SETAR of peg deviations pre- and post-PSM periods

period ρL ρM ρU ∆L ∆U

Pre-PSM 0.84 1.011 0.759 24bps 290bps
Post-PSM -0.228 0.913 0.412 1bps 27bps

Table presents results of SETAR analysis:

∆DAI,t =


ρL∆DAI,t−1 + εt, ∆DAI,t−1 < ∆L

ρM∆DAI,t−1 + εt, ∆L ≤ ∆DAI,t−1 ≤ ∆U

ρU∆DAI,t−1 + εt, ∆DAI,t−1 > ∆U

where ∆ is peg-price deviations (measured in basis points), the auto-regressive parameter is ρ and the low
regime is given by the threshold of deviations ranging from [−∞, ∆L], the middle regime is [∆L,∆U ] and the
high regime is [∆U ,∞]. The pre PSM sample is from 18 November 2019 to 18 December 2020. The post PSM
sample is from 18 December 2020 to 31 March 2021.
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Online Appendix to
"Decentralized Stablecoins and Collateral Risk"

(Not for publication)
We provide a roadmap of each section of our appendix.

1. Appendix A provides supplementary Figures on DAI creation and liquidation
dynamics.

2. Appendix B provides model proofs.

3. Appendix C presents sensitivity analysis with respect to model parameters.

4. Appendix D provides details on the MKR governance token supply and price
dynamics.



Appendix A: Definitions: CDP and liquidation pro-

cess

Figure A1: Process of DAI creation
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This figure illustrates the steps of depositing dollar wealth into a collateralized debt position (CDP)
to create DAI tokens. In borrowing a fraction of ETH collateral as DAI to invest in an alternative
currency. At the conclusion of the investment horizon, the investor sells investment for DAI tokens,
redeems their DAI tokens and frees their ETH collateral.



Figure A2: DAI Liquidation Mechanism
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This figure illustrates the steps of liquidation for a hypothetical CDP. In the initial state, the
investor deposits 2 ETH in a vault, and borrows 100 DAI tokens. At prices of PETH = 100 USD
and PDAI = 1 USD, the leverage of the CDP is 0.50. In the liquidation period, the price of ETH
declines to 60 USD. This triggers liquidation as the price is less than the liquidation price of 75
USD. DAI borrowings are forced to zero. Keepers auction off 100 USD worth of collateral to pay
off the DAI loan, this is equal to 5

3 ETH at the new price of 60 USD. The new amount of ETH in
the vault is 1

3 ETH. This example is a simplified setting as it ignores additional liquidation costs,
such as a liquidation penalty or the potential for fire sale auction prices of ETH.



Appendix B: Model
Derivation of speculators’ demand
To solve the speculators’ optimization problem in Equation (5), we specify the

following Lagrangian function:

L(θ) = E1[W s
2 ]− 1

2
γV ar1[W s

2 ] + λ1θ + λ2(θ̄ − θ) (19)

= W s
1

[
µS(s)(1 + θp1)− θ − θiB

]
− γW s2

1

2

[
σ2
E(1 + θp1)2 + θ2σ2

]
+ λ1θ + λ2(θ̄ − θ),

for λ1, λ2 ≥ 0. The first order conditions are:

0 = W s
1

[
µS(s)p1 − 1]− iB

]
− γW s2

1

[
σ2
E(1 + θp1)p1 + θσ2

]
+ λ1 − λ2, (20)

0 = λ1θ, (21)

0 = λ2(θ̄ − θ). (22)

We consider the following cases of variable and Lagrange multipliers values:

1. θ = 0.

Condition θ = 0 implies that λ1 ≥ 0 and λ2 = 0. The first-order condition (20)
becomes λ1 = −W s

1

[
µS(s)p1 − 1− iB

]
− γW s2

1 σ2
E. Hence, λ1 ≥ 0 is equivalent

to
µS(s)p1 − 1]− iB ≤ γW s

1σ
2
E.

2. 0 < θ < θ̄

In this case, λ1 = λ2 = 0 and the first-order condition (20) becomes

θ =

p1µS(s)−1−iB
γW s

1
− p1σ

2
E

p2
1σ

2
E + σ2

. (23)

In order to satisfy the initial restriction 0 < θ < θ̄, it should hold:

p1σ
2
E <

µS(s)p1 − 1− iB

γW s
1

< p1σ
2
E + θ̄

(
p2

1σ
2
E + σ2

)
.



3. θ = θ̄.

In this case λ1 = 0 and the first-order equation (20) implies

λ2 = W s
1

[
µS(s)p1 − 1− iB

]
− γW s2

1

[
σ2
E(1 + θ̄p1)p1 + θ̄σ2

]
≥ 0

which holds whenever

µS(s)p1 − 1− iB

γW s
1

≥ p1σ
2
E + θ̄

(
p2

1σ
2
E + σ2

)
.

Combining the three cases, we get Equation (6).
Q.E.D.

Derivation of arbitrageurs’ demand: single collateral
To solve the arbitrageurs’ optimization problem in Equation (5), we optimize the

expected utility function in each region ω ≥ 0 and ω ≤ 0 separately.

1. ω ≥ 0.

For this case we specify the following Lagrangian function:

L(ω) = E1[W a
2 ]− 1

2
γV ar1[W a

2 ] + λ1ω

= W a
1

[
ω(1 + iL)

p1
+ (1− ω)(1 + r)

]
− γW a2

1 ω2(1 + iL)2σ2

2p2
1

+ λ1ω, (24)

for λ1 ≥ 0. The first order conditions are:

0 = W a
1

[
1 + iL

p1

− (1 + r)

]
− γW a2

1 ω(1 + iL)2σ2

p2
1

+ λ1, (25)

0 = λ1ω. (26)

We consider the following cases of values of ω:

a). ω = 0.

Condition ω = 0 implies that λ1 ≥ 0. The first-order condition (25)
becomes

λ1 = −W a
1

[
1 + iL

p1

− (1 + r)

]
.



Hence, λ1 ≥ 0 is equivalent to

1 + iL ≤ (1 + r)p1.

b). ω > 0

In this case, λ1 = 0 and the first-order condition (25) becomes

ω =

(
(1 + iL)/p1 − (1 + r)

)
p2

1

γW a
1 (1 + iL)2σ2

. (27)

In order to satisfy the initial restriction ω > 0, it should hold:

1 + iL > (1 + r)p1.

Now we consider the maximum of the expected utility function of the short-
selling region.

2. ω ≤ 0.

For this case we specify the following Lagrangian function:

L(ω) = E1[W a
2 ]− 1

2
γV ar1[W a

2 ]− λ1ω

= W a
1

(
−ω
θ̄
µA + ω(1− p1(1 + r) + iB) +

(
1 +

ω

θ̄

)
(1 + r)

)
− γW a2

1 ω2

2

[
σ2
E

θ̄2
+ σ2

]
− λ1ω, (28)

for λ1 ≥ 0. The first order conditions are:

0 = W a
1

[
−µ

A

θ̄
+ (1− p1(1 + r) + iB) +

1 + r

θ̄

]
− γW a2

1 ω

[
σ2
E

θ̄2
+ σ2

]
− λ1,(29)

0 = −λ1ω. (30)

We consider the following cases of values of ω:

a). ω = 0.



Condition ω = 0 implies that λ1 ≥ 0. The first-order condition (29)
implies

λ1 = W a
1

[
−µ

A

θ̄
+ (1− p1(1 + r) + iB) +

1 + r

θ̄

]
.

Hence, λ1 ≥ 0 is equivalent to

µA ≤ θ̄(1− p1(1 + r) + iB) + 1 + r.

b). ω < 0

In this case, λ1 = 0 and the first-order condition (29) implies

ω = −θ̄
[
µA − (1 + r)− θ̄(1− p1(1 + r) + iB)

]
γW a

1 (σ2
E + θ̄2σ2)

. (31)

In order to satisfy the initial restriction ω < 0, it should hold:

µA > θ̄(1− p1(1 + r) + iB) + 1 + r.

Combining the cases and comparing the maxima values of the expected utility
function in each region, we get Equation (7).

Q.E.D.

Derivation of arbitrageurs’ demand: two types of collateral
To solve the arbitrageurs’ optimization problem in the case of two collateral, we

optimize the expected utility function in ω ≤ 0 region and compare it with the
maximum of the expected utility in ω ≥ 0 region (the latter case is the same as in
the single collateral case). Denote by N = 1 − p1(1 + r) + iB and M = µA−(1+r)

θ̄
.

In order to simplify the calculations we make the following assumptions about the
parameter values that are justified by the sample estimations in the main body of
the paper and are verified in the equilibrium above: σ2

E > σ2.



For this case we specify the following Lagrangian function:

L(ωE , ωU ) = E1[W a
2 ]− 1

2
γV ar1[W a

2 ]− λ1ω
E − λ2ω

U

= W a
1

[
−ω

E

θ̄
µA − ωU (1 + r) + (ωE + ωU )N +

(
1 +

ωE

θ̄
+ ωU

)
(1 + r)

]
− γW a2

1

2

[
ωE2

θ̄2
σ2
E + ωU2σ2

U + (ωE + ωU )2σ2

]
− λ1ω

E − λ2ω
U , (32)

for λ1, λ2 ≥ 0. The first order conditions are:

0 = W a
1 [N −M ]− γW a2

1

[
ωE

θ̄2
σ2
E + (ωE + ωU)σ2

]
− λ1, (33)

0 = W a
1N − γW a2

1

[
ωUσ2

U + (ωE + ωU)σ2
]
− λ2, (34)

0 = −λ1ω
E (35)

0 = −λ2ω
U . (36)

We consider the following cases of values of ωE and ωU :

a). ωE = ωU = 0.

Conditions ωE = 0 and ωU = 0 imply that λ1 ≥ 0 and λ2 ≥ 0. The first-order
conditions (33) and (34) become

λ1 = W a
1 [N −M ] ,

λ2 = W a
1N.

Hence, λ1 ≥ 0 and λ2 ≥ 0 are equivalent to N ≥M and N ≥ 0.

b). ωE = 0 and ωU < 0

Conditions ωE = 0 and ωU < 0 imply that λ1 ≥ 0 and λ2 = 0. The first-order
conditions (33) and (34) become

λ1 = W a
1 [N −M ]− γW a2

1 ωUσ2,

ωU =
N

γW a
1 (σ2

U + σ2)
.



Inequality λ1 ≥ 0 is equivalent to

N

σ2
U + σ2

≥ M

σ2
U

and ωU < 0 is equivalent to N < 0.

c). ωE < 0 and ωU = 0

Conditions ωE < 0 and ωU = 0 imply that λ1 = 0 and λ2 ≥ 0. The first-order
conditions (33) and (34) become

ωE =
N −M

γW a
1

[
σ2
E

θ̄2 + σ2
] ,

λ2 = W a
1N − γW a2

1 ωEσ2.

Inequality λ2 ≥ 0 is equivalent to

N

σ2
≥ M

σ2
E

θ̄2

and ωE < 0 is equivalent to N < M .

d). ωE < 0 and ωU < 0

In this case, λ1 = λ2 = 0 and the first-order conditions (33) and (34) become

ωE =

N
σ2+σ2

U
− M

σ2
U

γW a
1

(
σ2
E
θ̄2

+σ2
U

σ2
U
− σ2

U

σ2+σ2
U

) .

ωU =

Nσ2
E

θ̄2 −Mσ2

γW a
1

(
σ2σ2

U +
σ2
E

θ̄2 (σ2 + σ2
U)
) .

In order to satisfy the initial restrictions ωU < 0 and ωE < 0, it should hold:

N

σ2 + σ2
U

<
M

σ2
U

and
Nσ2

E

θ̄2
< Mσ2.



Simple calculations verifies the following summary of the results:

• If N ≥ 0 and N ≥M then

ωE = 0, (37)

ωU = 0. (38)

• If N < 0 and M ≤ δN then

ωE = 0, (39)

ωU =
N

γW a
1 (σ2

U + σ2)
, (40)

where
δ =

σ2
U

σ2
U + σ2

.

• If N ≥ 0 and N < M ≤ ∆N then

ωE =
N −M

γW a
1

[
σ2
E

θ̄2 + σ2
] , (41)

ωU = 0, (42)

where
∆ =

σ2
E

θ̄2σ2
.

• If N ≥ 0 and M > ∆N or N < 0 and M > δN then

ωE =

N
σ2+σ2

U
− M

σ2
U

γW a
1

(
σ2
E
θ̄2

+σ2
U

σ2
U
− σ2

U

σ2+σ2
U

) , (43)

ωU =

Nσ2
E

θ̄2 −Mσ2

γW a
1

(
σ2σ2

U +
σ2
E

θ̄2 (σ2 + σ2
U)
) . (44)

Q.E.D.





Appendix C: Model sensitivity analysis

Figure A3: DAI prices, volatility sensitivity analysis across different values of ETH
volatility
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This figure plots the expected DAI prices and volatility as a function of ETH volatility, for different
values of probability π of the good state of ETH returns. All other parameters are held constant.
Panel A corresponds to the expected DAI price. Panel B corresponds to peg-price volatility, cal-
culated as the standard deviation of peg-prices across the two states of collateral. The primitive
parameters are as follows: γ = 0.5, W s

1 = $350, D(B) = $50, D(G) = $0, θ̄ = 0.66, σ = 0.0188,
iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033.
The rest of the parameters in the models are computed numerically by optimizing the expected
utilities (5).



Figure A4: Sensitivity analysis: DAI prices and volatility across different values of
interest rate on DAI borrowing
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This figure plots the expected DAI prices and DAI volatility as a function of the DAI stability rate,
for different values of probability π of the good state of ETH returns. All other parameters are
held constant. Panel A corresponds to the expected DAI price. Panel B corresponds to peg-price
volatility, calculated as the standard deviation of peg-prices across the two states of collateral. The
primitive parameters are as follows: γ = 0.5, W s

1 = $350, D(B) = $50, D(G) = $0, θ̄ = 0.66,
σ = 0.0188, σE = 0.0459, iL = 0.0139/252, r = 0.015/252, µA = 1.0033, µE(G) = 1.0668,
µE(B) = 1.0033. The rest of the parameters in the models are computed numerically by optimizing
the expected utilities (5).



Figure A5: Sensitivity analysis: DAI prices and volatility across different values of
safe-haven demand
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This figure plots the expected DAI prices and DAI volatility as a function of the DAI safe-haven
demand in the bad state, for different values of probability π of the good state of ETH returns.
All other parameters are held constant. Panel A corresponds to the expected DAI price. Panel
B corresponds to peg-price volatility, calculated as the standard deviation of peg-prices across the
two states of collateral. The primitive parameters are as follows: γ = 0.5, W s

1 = $350, D(G) = $0,
θ̄ = 0.66, σ = 0.0188, σE = 0.0459, iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252, µA =
1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters in the models are computed
numerically by optimizing the expected utilities (5).



Figure A6: Sensitivity analysis: DAI prices and volatility across different values of
wealth and risk aversion
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This figure plots the DAI prices during the good and bad states as a function of the risk average
coefficient γ (Panel A) and the wealth of speculators W s

1 (Panel B). All other parameters are held
constant. The primitive parameters are as follows: D(B) = $50, D(G) = $0, θ̄ = 0.66, σ = 0.0188,
σE = 0.0459, iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252, µA = 1.0033, µE(G) = 1.0668,
µE(B) = 1.0033. For panel A we assume W s

1 = $350 and for Panel B we assume γ = 0.5. The rest
of the parameters in the models are computed numerically by optimizing the expected utilities (5).



Appendix D: MakerDAO auctions and governance
The Maker Governance protocol is in charge of adding new collateral types, the

regulation of the smart contracts enforcing collateralized debt positions, and adjust-
ing risk parameters of the protocol, such as the liquidation ratio, debt ceilings and
the stability and savings rate.

The MKR governance token is used for voting on the management of the protocol
and DAI. For example, to change the stability rate, each user places a vote on
their preferred stability rate by staking their MKR tokens. Each MKR token equals
one vote when locked in a voting contract. Users commit their Maker tokens to a
proposal, with the outcome being decided by the number of MKR tokens it receives.
MakerDAO token launched with a supply of 1 million MKR, but the supply will
change as MKR are minted or burned by the Maker ecosystem based on the success
of the DAI peg.

For example, consider an extreme price movement in ETH, such as the Black
Thursday crash on 12 March 2020. This triggered a liquidation event, which requires
collateral to be auctioned off to pay off the DAI loan and penalty fees. If the sale
of collateral is not sufficient to pay off the DAI loans triggered in liquidation, the
Protocol triggers a MKR Debt Auction. MKR is minted by the system, increasing
the amount of MKR in circulation, and then sold to bidders for DAI. 26 As well
as minting MKR tokens to pay off DAI loans during liquidation, the MKR tokens
are burned by the system in response to growth in the system Surplus, which is the
amount of DAI generated from system fees, including Stability Fees and Liquidation
Fees set by Maker governance. For example, the MakerDAO governance sets a safety
buffer in DAI as a contingency against a significant devaluation of the DAI peg.
When the system surplus exceeds the safety buffer, any additional DAI is auctioned
off for MKR, the governance token of the Maker Protocol, in lots of 10,000 DAI

26An additional safeguard of Maker Governance is a process called global settlement. When global
settlement is triggered, the entire system freezes and all holders of DAI and CDPs are returned the
underlying collateral. A global settlement can be triggered by a select group of trusted individuals
who hold the global settlement keys. If these signatories see something going horribly wrong, they
will enter their keys initiate the process ofÂ winding down the system.



in a Surplus Auction. The system then burns the MKR it receives in the Surplus
Auction, reducing the total supply. The economics of the MKR governance token is
that it appreciates in value when MKR tokens are burned due to growth in the system
surplus, and it depreciates in value when MKR tokens are minted in response to MKR
debt auctions to cover losses on liquidating DAI loans. Therefore, the valuation of
the MKR token is analogous to a dividend that is paid to MKR stakeholders for
supporting the governance protocol in maintaining the DAI peg.

Figure A7 documents the MKR price, total supply in circulation, MKR tokens
burned and system surplus. The MKR token features some of the dynamics of mints
and burns. During the March 12th Black Thursday Crypto crash, MKR tokens were
minted to pay off the DAI debt triggered by liquidations. In 2021, strong growth in
the system surplus due to stability and liquidation fees has led to a net reduction
of MKR tokens through surplus auctions. Strong growth in the system surplus has
also coincided with appreciation of the MKR token.



Figure A7: MKR price, MKR Supply, Burned/Minted Tokens and System Surplus
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This figure plots Panel A: MKR price, Panel B: MKR Supply Panel C: MKR Burned, and Panel
D: System Surplus. Sample period is from 13 April 2018 to 31 March 2020.
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