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1 Introduction

One of the central functions of financial markets is price discovery process – the process

of incorporation of new information into asset prices by matching buyers and sellers. In

cryptocurrencies, this price discovery process can take place across different exchanges

with principally different structures – centralized exchanges (CEX) that are organized as

traditional limit order books (LOBs) and decentralized exchanges (DEX) that operate

on blockchains using smart contracts and govern and set up prices algorithmically. These

different market structures offer different levels of security, speed of execution, trans-

parency and trading costs which are the key factors for the informed traders’ choice of

trading venue and corresponding instruments. In this paper, we use detailed transaction-

level and liquidity data to quantify the contribution to price discovery of trades (‘swaps’),

liquidity deposits (‘mints’) and liquidity withdrawals (‘burns’) in the DEX (Uniswap V3)

versus market and limit orders in CEX (Binance) for the most liquid ETH/USDC pair.

The design of these decentralized protocols and their comparison with the centralized

markets have been studied in several empirical and theoretical papers (Aoyagi and Ito

2021a; Capponi and Jia 2021; Capponi, Jia, and Yu 2022). Within this literature, an open

question is the choice of trading venues and particular instruments and order types by

informed traders and how this choice determines the nature of price discovery and adverse

selection. In traditional limit order book markets, besides market orders, the information

can also be transmitted via limit orders (Brogaard, Hendershott, and Riordan 2019). In

the context of AMMs, Uniswap V3 has introduced a unique tool for liquidity provision,

which allows liquidity to be posted in a specific price range. This means liquidity for a

token has a distribution, and is analogous to limit orders. Liquidity provision – ‘mint’

– for base token X at a price above (below) the market price is equivalent to a sell

(buy) limit order in this token while liquidity withdrawal – ‘burn’ – is analogous to limit

order cancellations. Introduction of this functionality in Uniswap V3 could also attract

participation of informed liquidity providers and a natural question is whether changes

in liquidity provision convey information about future returns.
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In this paper we employ an information analysis based on vector autoregression (VAR)

(Hasbrouck 1991a), which allows us to determine the price impact of order flow of different

types of orders in a dynamic setting, allowing feedback between prices and our measure

of order flow. Our results show that both swaps in the DEX and market orders in the

CEX significantly contribute to price discovery of major cryptoasset pairs. For liquid

pairs like ETH/USDC, swaps in the DEX market in the low-fee pool have comparable

price impact to market orders in the CEX market.

We find that actions of liquidity providers in both markets can also reveal information

about future returns. Net order flows of mints and burns in the DEX and limit orders

in the CEX have significant long-term price impacts. Price impacts of aggressive limit

orders, however, are about thirteen times larger than price impacts of aggressive burns and

about thirty times larger than price impacts of aggressive mints. Limit orders, mints and

burns that are posted or withdrawn further away from the current price (non-aggressive)

have either insignificant or opposite signs. Comparing swaps with mints and burns in

the DEX, we find that the price impact of swaps is about five times larger than the price

impact of burns and about ten times larger than the price impact of mints. In contrast,

the price impact of limit orders is about three times as large as the price impact of market

orders.

We also find evidence that liquidity providers in DEX market compete for positioning

their orders within the block and pay to expedite their orders execution. The classifica-

tion of transactions by priority of execution is usually based on gas fees, although this

can be a noisy proxy.1 Therefore to test whether higher priority transactions are more

informed, transactions are classified based on their position within a block. Using Ether-

scan data, transactions are categorized into top and bottom positions within a block,

with the median position serving as the threshold. As before, we employ a VAR model

to analyze order flow variables, decomposing order flow into above and below median

position within the block. The results indicate that top positioned mint and burn orders

1. The emergence of Flashbots MEV-geth introduces an off-chain sealed-bid auction mechanism, al-
lowing traders to bid for execution priority irrespective of gas fees. Lehar and Parlour (2023) reports
that a significant percentage of Ethereum blocks violate gas price rankings, indicating the prevalence of
zero gas fees for priority transactions.
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show significant impacts, suggesting that active liquidity providers strategically compete

for priority execution to minimize adverse selection costs and reposition stale liquidity

orders.

When conditioning our analysis on order size, we observe that the longer lasting

impact of order flow can be mainly attributed to larger trades on CEX and larger swaps

on DEX. This is in contrast with “stealth trading” evidence from traditional markets

(Barclay and Werner 1993; Chakravarty 2001). We also show that larger mint and burn

orders, with the above median order size, contribute the most to price discovery by

liquidity providers.

Furthermore, more active liquidity providers – those that combine liquidity provision

with aggressive trading via swap orders as well as those who actively reposition liquidity

– tend to be more informed than the others. On the other hand, higher frequency of

liquidity orders submission (numbers of orders) on its own is not associated with informed

trading.

Overall we show that liquidity providers in both DEX and CEX markets behave

strategically and their orders convey information about future returns of crypto-tokens.

This is expected for the CEX given the evidence of informativeness of limit orders in tra-

ditional markets. Posting new limit orders and cancelling them can move prices without

trades (Brogaard, Hendershott, and Riordan 2019). This is less obvious for mints and

burns – price cannot mechanically move without trades in the DEX market. Yet, it shows

that DEX liquidity provides can anticipate future price movements and their actions can

trigger further orders in either DEX or CEX markets that mechanically move prices.

Our final evidence is to test a potential alternative explanation to information in de-

centralized exchanges: that longer lasting price impact is driven by arbitrage exploitation

between CEX and DEX. We identify arbitrage opportunities as differences in DEX and

CEX prices, exceeding 0.5%. In general, price corrections on DEX are quick and happen

mostly within one minute. In contrast to arbitrage explanation, we show the long-lasting

effect of DEX order flow on returns during times when price gaps are both below and

above 0.5%.
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The remainder of the paper is structured as follows. Section 2 reviews the related

literature. In section 3 we introduce the institutional setting and data for both centralized

and decentralized exchanges. In section 4 we conduct our empirical analysis of information

of market orders and liquidity provision. Section 6 concludes.

2 Related Literature

Decentralized finance is a blockchain-based form of finance that uses smart contracts to

auto-execute in financial markets without the need for traditional intermediaries (Schär

2021; John, Kogan, and Saleh 2022). The focus of this paper is on Automated Mar-

ket Makers (AMMs), which are exchanges that use algorithms to execute trades as an

alternative to traditional LOBs. The early literature on DEX focuses on the role of liq-

uidity providers in DEX, and the co-existence of DEX and centralized LOBs (Lehar and

Parlour 2021; Aoyagi and Ito 2021b), the role of liquidity provision (Caparros, Chaud-

hary, and Klein 2023; Fang 2022; Lehar, Parlour, and Zoican 2022; Neuder et al. 2021),

empirical differences between DEX and CEX markets (Barbon and Ranaldo 2021; Han,

Huang, and Zhong 2021; Capponi, Jia, and Yu 2022; Foley, O’Neill, and Putniņš 2023;

Alexander et al. 2023; Heimbach, Wang, and Wattenhofer 2021), the role of arbitrage and

front-running in DEX markets (Daian et al. 2019; Wang et al. 2022) and the theoretical

foundation of AMM functions and informed trading (Hasbrouck, Rivera, and Saleh 2022,

2023; Park 2022; Angeris and Chitra 2020; Angeris et al. 2021; Angeris, Chitra, and

Evans 2022; Cartea, Drissi, and Monga 2023; Cartea et al. 2023; Aoyagi 2020).

A first set is understanding the motives for informed trading. Aoyagi and Ito (2021b)

is a model with LOB and DEX. There are informed traders and liquidity (noise traders),

and two types of liquidity providers on each exchange. An exogenous increase in liquidity

on DEX should make it more favorable for informed traders to cluster on DEX. This

in turn will reduce informed trading on CEX and cause a decline in bid-ask spreads as

adverse selection falls on CEX. An increase in volatility reduces liquidity provision, and

leads to a deterioration in effective bid-ask spreads on CEX but a reduction in normalized
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bid-ask spreads. The normalized bid-ask spreads fall because an increase in volatility

causes share of informed trading to decline on CEX. Capponi, Jia, and Yu (2022) show

that trades with high gas fees have higher informational content on DEX. They also report

that trades with higher gas fees are on average larger. Their explanation is that informed

traders would like to improve the likelihood of their trade execution in the next block

and assign higher gas tips to miners. For example, Han, Huang, and Zhong (2021) argue

that price differences between Binance and Uniswap have predictability for order flow.

Capponi and Jia (2021) examine the linkages between arbitrage and liquidity provision

in a game theoretic framework. They find that liquidity provision is negatively related to

volatility and positively related to trading volume. When gas fees are high, the authors

note that there are high limits to arbitrage: Uniswap prices do not converge to Binance

as much through arbitrage trading. We add to these studies by showing how arbitrage

stabilizes the price of the coin.

A second focus is on understanding the determinants of liquidity provision. Lehar

and Parlour (2021) model liquidity provision on DEX in a framework with liquidity

agents and arbitrageurs. They find that for low volatility, there is increased liquidity

provision and lower price impact, leading to (potential) for traders to prefer AMM to

LOB. Therefore AMM can dominate LOB for a range of low volatility and low share of

informed agents. They find empirical evidence supporting the model. Liquidity pool size

is decreasing in the size of the innovation (i.e. volatility) of the asset, and increasing

in volume (i.e. returns to liquidity provision). Barbon and Ranaldo (2021) look at the

factors that determine liquidity provision, such as (i) impermanent loss, (ii) gas fees and

transaction costs on LOB vs DEX. The main findings are that transaction costs are

much higher on DEX, and mainly attributed to high gas fees. They test price efficiency

through arbitrage lower bounds based on triangular arbitrage. They find that triangular

arbitrage bounds are an order of magnitude higher for DEX, and attribute this to high

gas fees and illiquidity of pools. Caparros, Chaudhary, and Klein (2023) focus on the

role of blockchain scaling on liquidity provision, and show that scaling solutions such

as Polygon and Arbitrum allow more re-positioning, which results in more concentrated
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liquidity provision and lower price impact for small trades. Fang (2022) show evidence of

passive liquidity providers that chase return fees but do not necessarily reallocate capital

in accordance with adverse selection risk. Lehar, Parlour, and Zoican (2022) analyze

liquidity fragmentation between low and high fee pools on Uniswap v3. Whereas low fee

pools typically attract institutional liquidity providers that re-balance more often, retail

liquidity providers typically concentrate in high fee pools. We contribute to this literature

by studying the information set of liquidity providers. Interestingly, liquidity providers

strategically re-balance in response to information on future returns. Specifically, we find

evidence of burning liquidity close to the current market price in anticipation of positive

ETH-USDC returns. We also find that burning activity at prices further away from the

current price predicts negative ETH-USDC returns.

3 Institutional setting and data

3.1 Centralized vs Decentralized Exchanges

Cryptoassets can currently be traded either on CEX or on DEX. CEXs, such as Binance

and Coinbase, use LOBs, similar to traditional exchanges. In LOBs, market orders

are matched with outstanding limit orders, i.e. traders need to find a counterparty for

their orders to be executed. However, once orders are matched, the execution is quickly

processed by the exchange server.

Decentralized exchanges, such as Uniswap and Curve, operate on the blockchain, using

a set of smart contracts. Most commonly, liquidity is provided through an “automated

market maker” (AMM). Each asset pair, for example, USDC/ETH, comprises a separate

liquidity pool. Liquidity providers can deposit (‘mint’) or withdraw (‘burn’) liquidity

from the pool. Liquidity demanders can then exchange, or swap, one token for another in

the pool at the current pool price. In contrast to LOB, all trades are executed against the

AMM, eliminating the need for a counterparty search. Importantly, execution on DEXs

is also more secure, because traders and liquidity providers keep custody of their assets.

However, these advantages of DEX come at a cost. Every transaction on the blockchain

6



has to be validated, before it is actually recorded. Validating takes time and traders have

to compensate validators with so-called “gas fees” for processing their transactions. Gas

fees represent a fixed cost per transaction and are paid in addition to the usual exchange

fees that traders pay to liquidity providers both on CEX and DEX. Thus, execution on

DEX is costly and not immediate.2

[Insert Figure 1 approximately here]

Figure 1 shows monthly DEX trading volume, divided by CEX trading volume (in

%) from January 2019 until July 2023. DEX volume share starts rising after the launch

of Uniswap v2 in May 2020 and first jumps over 10% in September 2020. It briefly

drops below 10% at the beginning of 2021, but bounces back to 10% with the launch of

Uniswap v3 in May 2021. DEX volume share ranges between 10% to 20% over 2022-2023,

reaching its highest value of 22% in May 2023. In our further analysis, we concentrate

on the largest CEX, Binance, and the largest DEX, Uniswap v3. Appendix A provides

details of trading mechanics on Uniswap v3.3

3.2 DEX Data

Our sample of DEX data consists of two most liquid pools on Uniswap V3, USDC/ETH

0.05% (DEX(5) henthforce) and USDC/ETH 0.3% (DEX(30) henthforce), over a sample

period of May 6, 2021 until July 12, 2022.4

We obtain the trade history data for Uniswap V3 DEX (5) and DEX (30) pools

through the Subgraph API.5 Trade data includes fields with pool address, fee tier, block

number, amounts of tokens swapped, and the pool price after the transaction. Using

these data, we compute the buy (sell) ETH volume for each minute, denoted as buy (sell)

order flow, swap(k)buy (swap(k)sell), where k = 5 for 0.05% pool and k = 30 for 0.3%

2. Lehar and Parlour (2021) provide a detailed introduction to decentralized exchanges. Barbon and
Ranaldo (2021) compare transaction costs on CEX and DEX, highlighting that the major difference in
execution costs on DEX arises due to existence of high gas fees.

3. See also Lehar, Parlour, and Zoican (2022) and Caparros, Chaudhary, and Klein (2023) for further
details and numerical examples of trading on Uniswap v3.

4. Our sample period starts with the launch of Uniswap v3 on May 6, 2021.
5. https://thegraph.com/hosted-service/subgraph/uniswap/uniswap-v3
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pool. Net swap order flow is defined as swap(k) = swap(k)buy − swap(k)sell. For the ease

of interpretation, we switch the order of the tokens in all our analyses, i.e. our base token

(X) is ETH and our quote token (Y ) is USDC.

We source DEX liquidity data from Kaiko, a cryptocurrency market data provider

that delivers industrial-grade, regulatory-compliant data to businesses. Kaiko’s DEX

liquidity data includes liquidity events (mints/burns) and liquidity snapshots. Liquidity

event data includes fields with pool address, fee tier, block number, token pair, wallet

id, amount minted or burned, and the corresponding tick range. Liquidity snapshots are

similar to LOB snapshots, showing the total amount of liquidity deposited within each

tick range, [i, i + l].6 Liquidity snapshots are reconstructed from liquidity events data.

Notably, the range of price levels, provided by Kaiko, is constrained to ±10% around the

current price of each block.

Figure 2 displays an example of liquidity distribution centered around the current

market price for ETH/USDC 0.5% pool. The upper panel shows the distribution sepa-

rately for each token, with values for ETH (token X) shown on the right axis and values

for USDC (token Y ) on the left axis. The x axis shows the relative distance in ticks

from the current market price, scaled to 0. For example, there are around 400 ETH and

around 400,000 USDC deposited in the current tick range [0;10]. Outside the current tick

range, there is only one token deposited (see Appendix A for details). Liquidity deposited

for tick ranges above the current tick contains only ETH (token X), and corresponds to

the ask side of the LOB (selling ETH for USDC). Liquidity deposited for tick ranges

below the current tick contains only USDC (token Y), and corresponds to the bid side

of LOB (buying ETH with USDC). The lower panel of the figure shows same liquidity

distribution with all ETH values converted to USDC.

[Insert Figure 2 approximately here]

We use liquidity snapshots to construct market depth within 2% of the current market

price, depth. Specifically, we compute depthask (depthbid) as the total amount of token X

(Y ), deposited within 2% (or 200 ticks) of the current market price (in USDC).

6. Liquidity deposited within each tick range is similar to market depth for traditional LOB.

8



We use liquidity events to construct the imbalances of liquidity minted on the ask

side (token X) and the bid side (token Y ), mint. For each mint of [xp; yp] posted on a

price range [pa, pb], we first compute total liquidity deposited, Lp, for this position from

Equations (10) and (11) in Appendix A.7 We then split the total price range [pa, pb] into

two sub-ranges: liquidity minted close to the current price (best) and liquidity minted or

burned away from the current price (away). We use 5 tick ranges threshold to define the

cut-off points for these two ranges. This five ticks range corresponds to 50 basis points

interval around the current price for DEX(5) pool and 300 basis points around the current

price for DEX(30) pool. The choice of these parameters ensures that about a quarter of

all mints and burns are within our best sub-range. Table 1 presents the distribution of

mints and burns distances from the current price in the DEX pools.

[Insert Table 1 approximately here]

Next, we dis-aggregate Lp into the quantity of x (y) minted at a particular sub-range,

again using Equations (10) and (11).8

We then define mint as the difference in the quantities of mintask and mintbid minted

for each minute on a given price sub-range. A positive imbalance of minted liquidity,

mint, shows that liquidity providers have minted more of token X (ask) than token Y

(bid) within a given time interval. For traditional LOB, it would indicate a larger amount

of sell limit orders posted on the ask side, relative to buy limit orders on the bid side,

indicating overall higher willingness of liquidity providers to sell. By the same logic, we

define burn as the difference in the quantities of burnask and burnbid burned for each

minute on a given price sub-range. A positive imbalance of burned liquidity, burn, shows

that liquidity providers have burned more of token X (ask) than token Y (bid) within a

given time interval. For traditional LOB, it would indicate a larger amount of limit orders

cancellations on the ask side, relative to the bid side, suggesting overall lower willingness

of liquidity providers to sell.

7. See Caparros, Chaudhary, and Klein (2023) for further details and numerical example.
8. We verify the validity by checking that the sum of the estimated quantities of x (y) at these three

price sub-ranges actually equals the total quantity of x (y) minted or burned for each transaction.
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3.3 CEX Data

Our sample of CEX data consists of the ETH-USDC pair traded on Binance over the

same sample period as DEX pools, May 6, 2021 until July 12, 2022. We obtain Binance

tick-level data from CryptoTick, a subsidiary of CoinAPI. Similar to DEX data, we define

the one-minute market order flow in the CEX market, market = marketbuy −marketsell,

where marketbuy and marketsell are buy and sell market order flow respectively. We

construct the end-of-minute mid-price series using LOB snapshots from CryptoTick. The

mid-price is calculated as the average of the last best bid and ask in each minute. We

then calculate the log return, ret, as the log price difference.

We construct the market depth on the ask (bid) side, depthask (depthbid), as the sum

of the best 50 ask (bid) orders at the end of each minute.9 We would also like to construct

liquidity imbalances for CEX data, similar to mint and burn for DEX pools. However,

we do not have the order-level data for CEX, making it impossible to track separately

limit order submissions and cancellations. Instead, we approximate the net new limit

orders added to the ask (bid) side within each minute, limitask (limitbid), as the change

in the depth on the ask (bid) side, adjusted for the buy (sell) order flow:

limitask = ∆depthask +marketbuy, (1)

limitbid = ∆depthbid +marketsell, (2)

limit = limitask − limitbid. (3)

In addition, we divide limit into two price ranges: liquidity added at the best ask

(limitask,best) and bid (limitbid,best) and away from the best ask/bid (limitask,away and

limitbid,best respectively). We then define the liquidity imbalance at (away from) the best

ask/bid as the difference between the new liquidity added at (away from) the best ask

9. Our data only covers first 50 orders on each side of the book. However, first 50 orders cover the
range of prices within 1.5%-1.7% of the current mid-price, which is close to our measure of market depth
within 2% for DEX pools. We also apply winsorization to the bid and ask side at the 1% level to remove
extreme outliers.
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and the best bid:

limitbest = limitask,best − limitbid,best (4)

limitaway = limitask,away − limitbid,away. (5)

Higher values of limitbest (limitaway) imply a larger amount of the new liquidity added

at best prices (away from) to the ask side, relative to the bid side within a given minute.

3.4 Summary statistics

Table 2 reports summary statistics of order flows, individual trade sizes and trade frequen-

cies (per minute), separately for DEX pools (DEX(5) and DEX(30)) and ETH/USDC

pair traded on Binance (CEX). All data are in one-minute frequency, with ETH amounts

converted to units of USDC.

[Insert Table 2 approximately here]

The Panel A of Table 2 shows the distribution of ETH swaps and market order flow.

Whereas order flow is balanced between purchases and sales both on DEX and CEX, we

observe a significantly higher average amount of ETH traded on DEX. Around 270K (in

USDC) is traded per active minute in the low-fee pool and 360K in the high-fee pool. In

contrast, the average corresponding amount on CEX is around 20K.10

This larger volume is mostly due to significantly larger average trade sizes of USDC

100K-200K on DEX, compared to the average trade of USDC 1.5K on CEX (as reported

in the Panel B of Table 2). This result is not surprising, given the existence of gas fees on

DEX that represent a fixed cost for each transaction. Barbon and Ranaldo (2021) also

confirm that gas fees represent a significant part of transaction costs on DEX, such that

DEX can currently only compete with CEX on larger trades. Further, Panel C shows

that trades are much more frequent on CEX, with 25 trades on average per minute in our

sample. In contrast, we observe only 3 trades for the low-fee DEX pool and 0.45 trades

for the high-fee DEX pool per minute.

10. We report statistics only for minutes with non-zero values of all variables.
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Overall, DEXs are mostly used for larger trades that happen less frequently, whereas

CEXs are mostly used for more frequent, but smaller trades. Within DEX, we observe

that low-fee pools are used for execution of relatively “small” (but more frequent) trades

with the average size of USDC 100K. High-fee pools are used for execution of the largest

trades on the market, with the average size of USDC 200K.

[Insert Table 3 approximately here]

Table 3 reports summary statistics of market depth and liquidity provision in both

DEX pools and CEX. Panel A reports statistics for market depth (average of ask side and

bid side). For DEX, market depth is measured at the end of each minute as total liquidity

deposited within 2% of the current market price (in USDC). For CEX, it is measured as

the sum of the first 50 orders on the ask or bid side (in USDC). On aggregate, DEX pools

are significantly deeper, with around 8 million USDC deposited to the pool. In contrast,

average market depth on CEX is only around 0.4 million USDC on each side.

Panel B shows the distribution of liquidity events, i.e. mints and burns for DEX pools

and the new limit order flows on CEX. We observe significantly larger mints/burns of

around 1.4-3 million USDC for a low-fee pool, compared to 0.38-0.9 million USDC for a

high-fee pool. These results are consistent with previous findings of Lehar, Parlour, and

Zoican (2022), who analyze co-existence of low- and high-fee pools on DEX. Their findings

also suggest that low-fee pools are used by larger and more active (i.e. institutional)

liquidity providers, whereas the high-fee pools are rather used for liquidity provision by

smaller and more passive (i.e. retail) liquidity providers.

Limit order flow on CEX is much lower on average than on DEX, just around 18-

20 thousands. However, changes in liquidity on CEX are much more frequent than on

DEX pools, taking place practically every minute. Mints are more frequent than burns on

both DEX pools – there are more time periods with minted liquidity than burnt liquidity.

This is because withdrawing (or burning) liquidity from the pool is costly. Hence, we

expect liquidity providers to burn their positions (and subsequently re-mint them) only

when their mid-price deviates significantly from the current market price. Whereas burns
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happen less frequently, they are on average larger than mints for both DEX pools (see

also Panel C for individual order sizes).

Panel D presents frequency that particular order types is submitted within every

minute. Probability that during a particular minute interval a mint order is submitted

in DEX(5) equals to about 4% (and similar for burns). For DEX(30) this probability is

9% (and 6% for burns). In the most extreme case, we observed 27 mint orders submitted

within the same minute in DEX(5) (7 burn orders).

Existence of fixed gas fees on Ethereum prevents liquidity providers to update their

positions frequently on DEX. Hence, we observe larger but less frequent liquidity changes

on DEX. Greater depth of DEX pools is especially attractive for large traders, as it

minimizes price impact of their trades. For CEX, we observe more frequent but smaller

liquidity changes, since there is no cost associated with limit order re-submission. Further,

CEX are more attractive for small traders, for whom price impact of their trades is of

less importance than low execution costs (in absence of gas fees).

4 Empirical Evidence

4.1 Price impacts of order flows

We start our analysis with a VAR with order flow of both decentralized and centralized

exchanges, and a benchmark CEX return (as used in the literature, e.g., Capponi, Jia,

and Yu (2022)).

AYt = α +
25∑
j=1

AjYt−j + ϵt, (6)

where

Yt =[swap(30), swap(5), mint(30)best, mint(30)away, burn(30)best, burn(30)away,

mint(5)best, mint(5)away, burn(5)best, burn(5)away, market, limitbest, limitaway, ret].

(7)
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In our analysis, we will use variables from both Uniswap V3 pools. We assume the

following structure in our VAR methodology: shocks to order flow can cause shocks to

returns contemporaneously, however shocks to returns cause changes in order flow with a

delay. This follows the structural VAR methodology outlined in Hasbrouck (1991a). We

also mute all contemporaneous shocks between DEX variables.

To test for significance of the impulse responses, we construct a distribution of cu-

mulative Impulse Response Functions (CIRFs) derived from 1,000 computations utilizing

the Wild bootstrap method. The significance of the CIRF is determined relative to the

empirical distribution obtained from the 1,000 bootstrapped CIRFs. In the Wild Boot-

strap method, we first generate residuals based on the actual residuals of the VAR model

and a random value drawn from the Rademacher distribution. We then simulate data

using both a small set of observations from the real data (equivalent to the number of

lag observations) and the generated residuals. This simulated data is subsequently used

to estimate the CIRF, a process we repeat 1,000 times.11

[Insert Table 4 approximately here]

Table 4 summarizes the results and reports the CIRFs of market and swap net order

flows (buy − sell), CEX net limit order flow (ask side − bid side of LOB) and DEX net

minted and burned order flow (token X − token Y). We record coefficients at horizons of

0, 1, 10 and 30 minutes after the shock.

Cumulative price impact of a 1 USDCMillion shock to market order flow leads to 0.126

percentage point change in the ETH-USDC return 30 minutes after the shock (Panel A).

We find that price impact of swap order flow in the DEX market is of a similar magnitude:

for the low fee pool, a shock to swap order flow has a price impact of 0.124 percentage

points 30 minutes after the shock. For the high fee pool, a shock to swap order flow has

a price impact of 0.203 percentage points 30 minutes after the shock. All cumulative

impulse responses to liquidity taking order flow shocks are statistically significant at the

1% level.

11. The procedures outlined in the MATLAB VAR Toolbox by Ambrogio Cesa-Bianchi. See
https://sites.google.com/site/ambropo/MatlabCodes?authuser=0.
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Limit orders posted at the best bid-ask have a negative effect on returns. In contrast,

limit orders posted further away from the best bid-ask have a positive effect on returns.

Quantitatively, the price impact coefficients are of a similar order of magnitude to the

effect of market orders, which is consistent with evidence in equities markets (Brogaard,

Hendershott, and Riordan 2019). A 1 USDCMillion increase in limitbest decreases returns

by 0.317 per cent at a horizon of 30 minutes. In contrast, a 1 USDC Million increase

in limitaway increases returns by 0.074 per cent 30 minutes after the shock. We argue

that the significant price impact of limit orders is due to strategic liquidity provision,

and supports work in equities markets that limit orders have price impact (Brogaard,

Hendershott, and Riordan 2019). Informed liquidity providers reposition liquidity toward

a price range further away from the best bid-ask in anticipation of future price increases.

Net flows of mints and burns in the DEX market have also significant price impact

when they are close to the current price (best) and carry information about future price

changes. For DEX(5), positive net flow of mint orders submitted in a range close to the

current price predicts future price decreases of 1.3 basis points (See Panel B). Positive

net flow of burn orders in DEX(5) that withdraw liquidity in a range close to the current

price predicts future price increases of 2.5 basis points. These coefficients are substantially

smaller than the price impact estimates of market orders and swaps. While they are also

nominally smaller than the price impacts of CEX limit orders, given that limit orders are

substantially smaller in magnitude, a price impact of 1 standard deviation shock to DEX

liquidity order flow is comparable to the price impact of 1 standard deviation shock to

CEX limit order flow.

In DEX(5), burns of ETH that are further away from the current price tend to have

a negative price impact, with smaller economic values of -0.006. This finding suggests

that liquidity providers burn their net liquidity on the ask side that is further away

from the current price, in anticipation that prices will go down, leaving their positions

inactive. DEX(5) mint orders submitted further away from the current price tend to

have insignificant long-term price impacts. Both mints and burns in DEX(30) show no

significant long-term price impacts (see Panel C).
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Our findings suggest that liquidity providers in the DEX market have similar behavior

to liquidity suppliers in the CEX market, engaging in active liquidity re-positioning across

alternative price-ranges. For example, if liquidity providers expect prices to fall, they are

more willing to increase their net provision of ETH at the current price, and decrease

their net liquidity provision further away from the current price. Conversely, if liquidity

providers expect prices of ETH to rise, they decrease their net provision of ETH close to

the current tick range, and increase their provision of ETH for prices further away.

The liquidity re-positioning hypothesis is applicable only to DEX(5) and not to

DEX(30). This is because DEX(5) has a smaller tick size for price ranges compared

to DEX(30), thereby increasing the incentive for informed liquidity providers to engage

in concentrated provision based on their price expectations. Further, all swaps are first

routed to DEX(5) pool to minimize transaction costs. Only the residual order flow from

large trades is then executed at DEX(30) pool, after cheaper liquidity at DEX(5) has

been depleted. With trades arriving more frequently to DEX(5) pool, there is a larger

incentive for liquidity providers to re-position more frequently in anticipation of informed

trades. Lehar, Parlour, and Zoican (2022) also show that large (i.e. professional) liquidity

providers are active in low-fee pools and small (i.e. retail) investors prefer to passively

provide liquidity in high-fee pools.

Figure 3 visualizes the CIRF coefficients for different types of order flows.

[Insert Figure 3 approximately here]

4.2 Variance decomposition

The results in the previous section show the average permanent price impacts across

different orders. While this demonstrates evidence that different types of orders convey

information about future prices, it does not directly determine each order type’s contribu-

tion to overall price discovery. In order to complete the picture we employ the Hasbrouck

(1991b) variance decomposition to weight the impulse responses functions by the variance

of innovations in each order type to calculate the total contribution to price discovery by

order type. The results of the variance decomposition is given in Table 6.
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[Insert Table 6 approximately here]

In total, swap orders contribute about 25% to price discovery while market orders

in the CEX market account for only 0.71%. This reflects the fact that despite a higher

average price impact, order size of swaps is substantially higher than that of the market

order.

All mints, burns and limit orders individually as well as in aggregate contribute less

than 1%. This suggests that although there is evidence that changes in liquidity carry

information in both markets, their contribution to price discovery is relatively small.

5 Active vs passive liquidity providers

In this section we explore in more detail various patterns in strategies of active liquidity

providers in the DEX market. In particular, we explore if liquidity providers who pay

for priority of execution, submit large orders, combine active liquidity provision with

aggressive trading (submitting both mint/burns with swap orders), relocate liquidity

(simultaneously burn and mint liquidity) and submit orders most frequently tend to

be more informed than others. We also explore the role of arbitrage activity in price

discovery in the DEX market.

5.1 Execution priority

Given the evidence of active liquidity management in the DEX market, it is natural to

ask if informed liquidity providers are willing to pay high gas fee in order to reposition

liquidity ahead of other traders or before the information is revealed to public. Capponi,

Jia, and Yu (2022) show that in Uniswap V2 the high-fee DEX trade flow is considerably

more informative than the low-fee DEX trade flow. In this section we perform analysis

to identify whether active liquidity providers in DEX are also actively expediting the

execution of their submission strategies.

One way to classify transactions according to priority of execution is based on the

gas fee paid by the trader. The execution sequence of pending transactions in the public
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mempool is usually determined by the gas fee that traders bid for their orders. Higher

gas fee increases the likelihood the order will get a priority position within the next

block, ensuring that it is executed before other pending orders. Yet, this mechanism

can be a noisy proxy of the execution speed since there currently exist other ways to

ensure priority of order execution. On November 23, 2020, Flashbots released an open-

source MEV-geth for Ethereum, outsourcing block construction via an off-chain sealed-bid

auction mechanism.12 Essentially, Flashbots MEV-geth introduces a private settlement

market that allows traders to bid for priority of their transaction execution off-chain.

Thus, the miner of the block is compensated privately and the transaction gains priority

within the next block even with zero gas fees. Lehar and Parlour (2023) show that around

70%-80% of blocks on Ethereum violate gas price ranking by October 2021, with the first

transactions in the block having zero gas fees. In order to test whether transactions with

higher execution priority are indeed more informed, we therefore classify them by their

position within the block.

Based on the transaction hash, we obtain the position of each transaction in the cor-

responding block from the Etherscan. Etherscan serves as a block explorer and analytics

platform for Ethereum, a decentralized smart contracts platform. It provides detailed

information on Ethereum transactions, blocks, addresses, and tokens, enabling users to

verify and analyse activities on the Ethereum network.

To classify transactions into top and bottom positions within the block, we examine

the overall distribution of the positions of mints/burns and swaps across all blocks. A

transaction is classified as a top position transaction if its position index within the

block is below the median position of the distribution, which is 80.13 We denote the

corresponding order flow variables with superscripts top and bottom to characterize the

order flow of the corresponding positions within the block.

We estimate the VAR model based on the variables as in Equation (7) but decom-

posing each order flow variable (swap(k), mint(k) and burn(k)) into the corresponding

top (swaptop(k), mint(k)top and burn(k)top) and bottom (swapbottom(k), mint(k)bottom and

12. See https://www.flashbots.net/
13. The transaction position within each block starts from 0.
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burn(k)bottom) order flows.

[Insert Table 7 approximately here]

Table 7 presents the estimation results of the corresponding CIRFs at n = 30 minutes

horizon. Both top and bottom swap transactions have positive and significant permanent

price impact with transactions from the bottom of the distribution having somewhat

higher price impact. This is in contrast with Capponi, Jia, and Yu (2022) results from

Uniswap V2 that use high gas fee ordering, which indeed ensured the priority of execution

before the introduction of Flashbots MEV-geth.

Net flow of top positioned mint orders within best price range has negative significant

price impact in DEX(5) pool while net flow of top positioned burn orders has positive

significant price impact. Interestingly, top positioned best burn orders have positive and

significant price impact also in DEX(30) (unlike the aggregate burn(30)best order flow

in Table 4). Top positioned burns in away range of the current price have negative

and significant at 5% level price impacts (in both pools) indicating active repositioning

when price is expected to move away from the liquidity position. This is consistent

with the hypothesis that active informed liquidity providers are competing for priority of

execution for their orders in an attempt to minimize adverse selection costs or reposition

stale liquidity orders.

5.2 Conditioning on order size

In this section we examine whether informativeness of order flow depends on the order

size. Both traders and liquidity providers who submit large orders in general have more

incentives to gather information given their large exposure to the market. Hence we

hypothesize whether large positions convey more information about future ETH price.

We re-run the VAR specification in Equation (6) where we now condition on the

order size. For market orders and swaps, we examine separately buy and sell order flow,

conditional on its size. We classify sell (buy) order flow as large (large) if it is above

the median size of the distribution of non-zero minute-level sell (buy) order flows, and
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as small (small) otherwise. For mints (burns), we classify orders as large (large), if they

are above the median size of the distribution of all mints (burns) in our sample.14.

[Insert Table 8 approximately here]

Table 8 presents the estimation results of the corresponding CIRFs at n = 30 minutes

horizon. Large buy and sell market orders have more permanent price impact than small

orders in the CEX market. This is in line with our hypothesis that large orders have more

information content. Small orders in the CEX market have larger price impact than large

orders, however it is insignificant at longer horizon (n = 30).

For large swaps, we also observe more permanent price impacts in both pools. These

trades are typically coincident with high gas fees. Capponi, Jia, and Yu (2022) find

that trades executed with higher gas fees typically have more information content. Small

swaps in the DEX market have opposite sign price impacts. This suggests that small

traders are uninformed and tend to lose money in a similar fashion to noise-traders in

traditional markets. They do not contribute to the permanent price impact of aggregate

order flow.

Results for mints and burns also broadly support our hypothesis: large mint and burn

orders submitted in DEX(5) exhibit significant long-term price impacts. In contrast, small

mints and burns do not convey information. As before, we do not find any significant

price impacts of mints and burns in DEX(30), since liquidity provision in this pool is

mostly done by small (i.e. retail) providers who tend to be uninformed.

5.3 Strategies of active liquidity providers

In this section we examine whether an individual liquidity provider’s strategy to combine

different order types conveys information about future price changes. We consider three

different classifications. The first is whether a particular liquidity provider follows a pure

vs mixed order strategy. We define pure liquidity providers as those who only submit

liquidity orders (mints or burns). In contrast, mixed liquidity providers are defined as

14. We cannot perform the same analysis for limit orders on CEX because we do not have order-level
data. Therefore, we just leave limitbest and limitaway as in previous VAR specifications
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those who combine liquidity provision with aggressive trading using swap orders. The

intuition behind this definition is that traders combining different order types are more

sophisticated and likely to pay more attention to information acquisition than purely pas-

sive liquidity providers. The second classification differentiates active liquidity providers

who reposition their liquidity based on the state of the market from passive liquidity

providers. The third classification differentiates active liquidity providers based on the

frequency of their liquidity updates. Liquidity providers who actively submit liquidity

updates are those who actively utilize the additional tools provided in Uniswap V3 func-

tionality. We start by classifying liquidity providers into pure vs mixed categories, using

their wallet ids. We denote by mixed those orders that are submitted by a wallet that

submitted at least one swap as well as at least one liquidity order (mint or burn) dur-

ing our sample period. We classify swap orders as onlyswap if the wallet submitting it

only submits swap orders throughout the sample. Similarly, liquidity orders coming from

wallets specializing only on liquidity provision are classified as onlylp.

In order to classify wallets as those who engage in repositioning liquidity, we verify if

following a burn order, the liquidity provider (wallet) has made a subsequent mint order

within (including) 2 minutes. In this case we classify this wallet as repo. Wallets that

have not submitted any repositioning order bundles are classified as other.

Analogously, we classify wallets into frequent (highfr) and infrequent (lowfr) liquid-

ity providers. Wallets with the number of liquidity position updates (mints and burns) in

the upper quartile of the distribution in the sample (which is 4) are classified as frequent

(highfr). Otherwise, the wallet and all its liquidity orders are classified as infrequent.

[Insert Table 9 approximately here]

Panel A of Table 9 provides price impact estimates for mixed versus onlyswap and

onlylp order flow. Both type of swaps (mixed and onlyswap) exhibit positive and signif-

icant price impact in DEX(5) and DEX(30). The results for liquidity order flows support

our hypothesis that the orders submitted by mixed type wallets are more likely to convey

information – their mint best order flow has negative price impact while burn best order
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flow has positive price impact in DEX(5). Interestingly, we see that burn order flow away

from the price coming from mixed wallets has negative and significant effect. This pre-

dictability suggests that traders observing the price moving away from the current price

tend to burn this liquidity and execute aggressive swap orders in the direction of price

movement.

Panel B of Table 9 provides the results on price impact of providers who engage

in active liquidity repositioning. The results suggest that repositioning of liquidity in

DEX(5) close to the current price conveys information (active liquidity management).

Active liquidity management conveys information only in DEX(5), which supports hy-

pothesis that in low fee pool liquidity providers should be more competitive and active

to avoid impermanent loss. Order flow that is burned away from the current price is

informative not due to liquidity repositioning strategy. Price impacts of liquidity order

flows in DEX(30) are all insignificant suggesting that in high fee pool incentives for active

liquidity management are smaller and not driven by informational reasons.

Panel C of Table 9 provides the estimation results for frequent versus infrequent

liquidity wallets. The results reveal that, in general, frequency of liquidity updates does

not translate into higher information content. In DEX(5), both mint and burn order flows

close to the current price have significant price impacts at 10% level regardless whether or

not submitted by the frequent or infrequent liquidity wallets. The only exception here are

burn orders submitted away from the current price – more active wallets with frequent

liquidity updates tend to forecast future price changes in an opposite direction to more

passive liquidity providers.

5.4 Information and arbitrage trading

In the previous sections we have found that swaps, mints and burns have persistent price

impact on the DEX. An alternative explanation to our hypothesis of information of DEX

markets is that they are populated primarily by arbitrageurs that trade in response to

the price difference between exchanges. To rule out this possibility, we condition our

order flow analysis based on the price difference between exchanges. In particular, we
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test if the price impact of orders is significant predominantly around arbitrage deviations

and whether information conveyed by those orders reflects purely publicly observed price

differences across the markets.

We define the price difference between the DEX and the CEX market as pd =

prcDEX − prcCEX and the percentage price difference as ppd = 100× pd/prcCEX . Table

10 summarizes the results. Panel A reports the statistics when the price difference is

calculated based on DEX(5) price. The price difference is small on average: its absolute

value is about 3.1 USDC. The average percentage price difference is 0.005 per cent and

the average of its absolute value is 0.108 per cent. The price difference can, however,

be substantially large and can reach up to 564.7 USDC or 28.60 per cent. The price

differences on DEX(30) pool (see Panel B) is about 1.5 times larger on average although

its extreme values are comparable to the ones on DEX(5).

[Insert Table 10 approximately here]

Given presence of substantial price differences and arbitrage opportunities, a question

is whether the order flows play a stabilizing role in the market. For example, in response

to a positive price difference (prcDEX > prcCEX), stabilizing order flows are buy orders

in CEX and sell orders in DEX. Conversely, conditional on a negative price difference,

stabilizing order flows are sell orders in CEX and buy orders in DEX. For an arbitrage

opportunity, we require that the absolute value of ppd be at least 50 basis points. To

test this, we identify 17,503 instances of arbitrage opportunities, which occurred 3%

of the total time, when using the DEX(5) price. When using the DEX(30) price, we

identify 8,473 instances of arbitrage opportunities, which occurred 1.4% of the total

time. We then condition price difference and order flow in period 1 and consider the

following six cases of (i) pdt > 0, swapt+1 < 0, (ii) pdt > 0,markett+1 > 0, (iii) pdt >

0, swapt+1 < 0,markett+1 > 0, (iv) pdt < 0, swapt+1 > 0, (v) pdt < 0,markett+1 < 0,

(vi) pdt < 0, swapt+1 > 0,markett+1 < 0. Figure 4 investigates the speed at which order

flows correct arbitrage opportunities.

[Insert Figure 4 approximately here]
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Panel A documents the results using the 0.05% ETH-USDC pool. On the left, we

consider cases (i) to (iii), which are stabilizing order flows in response to a positive price

difference. The results show that DEX markets have a stronger stabilizing effect on the

price at a horizon of 10 minutes. Case (i), which is conditioning on stabilizing order flow

on the DEX market, achieves similar price convergence to case (iii) when it is conditioned

on stabilizing order flow on both markets. Turning to cases (iv), (v) and (vi), we find that

convergence based on stabilizing order flows on both markets matter. Case (vi) generates

the most convergence in prices across exchanges, suggesting both order flows matter for

stabilization. Panel B considers the 0.3% pool. As before, we find that convergence of

peg prices is stronger conditional on DEX order flow when the price difference is positive,

however convergence is similar when considering stabilizing order flows in response to a

negative price difference.

In order to estimate and test for stabilizing effect of trades in both markets we use

the price difference as an additional explanatory variable in our VAR analysis in equation

(6). The explanatory variables in our VAR include the order flow (buy and sell) of both

CEX and DEX markets, as well as the price difference between DEX and CEX markets.

Yt =[swapsell, swapbuy, newliqask,best, newliqbid,best,

marketsell, marketbuy, limitask,best, limitbid,best, pd],

where newliq is the new net liquidity provided in the corresponding DEX pool and defined

as newliq = mint − burn. In line with our results documenting price convergence, we

note order flows have stabilizing properties on the price difference in Table 11.

[Insert Table 11 approximately here]

Panel A of Table 11 presents estimates of the effect of a 1 USDC Million order flow

CEX buy shock on the price difference. Based on the price difference between DEX(30)

and CEX, a sell shock on the CEX has a cumulative effect of increasing the price dif-

ference by 27 USDC, while a buy shock on the CEX decreases the price difference by

approximately 59 USDC. Similar to the CEX estimates, DEX buy orders have a larger
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effect on the price difference. For example, in the DEX(30) pool, a 1 USDC Million buy

shock increases the price difference by 63 USDC, and a sell shock decreases the price

difference by 60 USDC. These are quantitatively larger effects, which suggests that DEX

order flow has larger cumulative price impact on the difference between DEX and CEX

markets. The asymmetry matches our results based on Figure 4: DEX buy orders have

more stabilizing effects on the price difference than DEX sell orders. We find new liq-

uidity of DEX markets have insignificant effects on the price difference between markets.

However, a new limit order at the best ask price on the CEX has positive effects on

the price difference. A 1 million USDC shock to new liquidity on the CEX leads to an

increase in the price difference of approximately 135 USDC.

Having established the fact that orders in the CEX and DEX market makes stabilizing

effects on price difference we turn to answering the question if orders covey information

beyond exploitation or arbitrage.

We identify arbitrage opportunities when the absolute price difference is at least 50

basis points (0.5%) or greater. We classify an order flow as “highpd“ (“lowpd”) if its

absolute values of ppd is equal to or greater (less) than 50 basis points. We run the

following specification in Equation (6) where

Yt =[swapsell,highpd, swapsell,lowpd, swapbuy,highpd, swapbuy,lowpd,

newliqask,best,highpd, newliqask,best,lowpd, newliqbid,best,highpd, newliqbid,best,lowpd,

marketsell,highpd, marketsell,lowpd, marketbuy,highpd, marketbuy,lowpd,

limitask,best,highpd, limitask,best,lowpd, limitbid,best,highpd, limitbid,best,lowpd, ret].

Panel B of Table 11 summarizes the results. We find that for the CEX market, there

are quantitatively larger coefficients for the CEX market conditioned on a high price

difference. For example, based on the price difference between DEX(5) and CEX, CEX

buy shocks have a price impact of approximately 0.50 per cent 30 minutes after the shock

during periods of mispricing, however this decreases to 0.11 per cent when CEX and DEX

prices are aligned. Moreover, long-term price impacts for sell orders conditional on high
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price difference are not significant. This shows that arbitrage trades in the CEX move

prices substantially more as compared to non-arbitrage trades but not always result in

permanent price move (for example, if the arbitrage appeared due to a liquidity shock,

see Foucault, Kozhan, and Tham (2017)).

We find that swaps of sell orders in the DEX(30) market have quantitatively larger

price impacts when the price difference between exchanges is below the median. A

DEX(30) sell shock has a cumulative price impact of -0.18 percent after 30 minutes

for a small price difference. In contrast, the cumulative price impact is -0.09 percent,

conditioned on a high price difference. For DEX(30) buy swaps and DEX(5) swaps, the

price impact is quantitatively similar when conditioned on the price difference.

More importantly, non-arbitrage trades (those conditioned on low price difference)

have a significant long-term price impacts in both markets. This means that trades in

both CEX and DEX markets convey information different from the one reflected in the

price difference between the two markets.

6 Conclusion

In this paper, we investigate the coexistence of DEXs like Uniswap V3 and traditional

limit order book exchanges such as Binance. We address the question of whether DEXs

have more information for the price discovery process compared to traditional markets.

We make two main contributions. First, we assess the relative price impact of market

orders on DEX and CEX markets. Second, we explore the role of liquidity provision on

DEX markets and its impact on future returns. To conduct our analysis, we employ a

VAR analysis framework, which allows us to determine the price impact of order flow in

a dynamic setting with feedback effects. Our results indicate that DEX order flow has a

comparable long-lasting impact on returns similar to CEX. The long-lasting impact can

be attributed to larger trades on DEXs, which face higher price impact. Informed traders

may find DEXs more attractive due to the fixed gas fee associated with trading on these

platforms, allowing them to pool with larger uninformed traders and minimize the price

26



impact of their trades.

We then explore the role of liquidity provision in addition to market orders in Uniswap

V3. The unique aspect of this market lies in liquidity being provided in specific tick

ranges, resembling a limit-order book. By posting liquidity for base token X above the

market price, providers create sell limit orders, while posting below the market price

results in buy limit orders.

Through analyzing the distribution of liquidity, we present two key findings. First, we

develop a measure of new liquidity by tracking the difference in mints and burns of token

X. This reveals evidence of liquidity re-positioning, where providers burn tokens close

to the market price of an expected appreciating token, indicating that active liquidity

re-positioning can predict future returns. Second, we observe that the state of the liquid-

ity distribution, denoted as the depth of liquidity at each price range, contains valuable

information about future returns. Our findings suggest that informed traders may pre-

fer trading with limit orders, similar to traditional markets, as they actively re-balance

their portfolios to post liquidity further away from the current market price, guided by

expectations of currency returns.

We also show that informed liquidity providers are strategic with respect to execution

priority. Using Etherscan data, we categorize transactions into top and bottom positions

within a block. Top positioned mint orders within a specific price range show negative

price impacts, while top positioned burn orders demonstrate positive impacts. These

findings suggest that liquidity providers with more price impact are strategic and vie for

priority execution of their transactions.

Our final contribution is to address a potential alternative explanation for the longer-

lasting price impact on DEXs, which is if they are responding primarily to arbitrage

between pricing on decentralized and centralized markets. We consider the limits of

arbitrage between CEXs and DEXs. However, our analysis shows that the persistent

price impact of DEX order flow on returns is not solely driven by price gaps between the

two types of exchanges. Even during periods when price differences are small or large, the

price impact remains robust, suggesting that factors other than arbitrage opportunities
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contribute to the observed effects.

In conclusion, our study provides empirical evidence on the relative role of market and

limit orders in DEXs, highlighting the informative nature of DEXs for price discovery.

The findings support the notion that DEXs can serve as preferred trading venues for

informed traders and emphasize the importance of liquidity distribution in understanding

the dynamics of DEX markets. This research contributes to the broader discussion on the

potential of DEXs to replace traditional limit order book infrastructure and sheds light

on the unique characteristics and information content of these decentralized exchanges.
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Figures

Figure 1: Monthly share of DEX volume.

Monthly decentralized exchange (DEX) volume divided by centralized exchange (CEX) volume (as a

percentage).
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Figure 2: Liquidity distribution.

This figure displays an example of liquidity distribution centered around the current market price for

ETH/USDC 0.5%. The x axis shows the relative distance in ticks from the current market price, scaled

to 0. The upper panel shows the amount of liquidity deposited within each tick range separately for

each token, with values for ETH shown on the right axis and values for USDC on the left axis. Liquidity

deposited for tick ranges above the current tick contains only ETH, and corresponds to the ask side of

the LOB (selling ETH for USDC). Liquidity deposited for tick ranges below the current tick contains

only USDC, and corresponds to the bid side of LOB (buying ETH with USDC). The lower panel of the

figure shows the same liquidity distribution with all ETH values converted to USDC.
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Figure 3: Cumulative impulse response functions of order flows on returns
This Figure plots the cumulative impulse response of ETH-USDC returns to a positive shock to order flow in the centralized (Panel A) and the decentralized
(Panel b and C) exchanges. The methodology is based on Hasbrouck (1991a). In Panel A, we measure the effect of a 1 million USDC shock to market order flow
(market), limit order flow posted at the best price (best) and away from the best price (away). In Panel B (C) we measure the effect of a 1 million USDC shock
to swap order flow (swap), mint order flow submitted within 5 tick ranges (mintbest) and outside 5 tick ranges (mintaway) as well as burn order flow (burnbest

and burnaway) on DEX(5) (DEX(30) respectively) pool. The benchmark return is based on bid-ask prices of Binance ETH-USDC. All data is at a minute level.
The shaded area represents the range between the 2.5th and 97.5th quantile values, which captures the middle 95% of the data distribution.
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Panel C: CIRF of DEX(30) order flow on returns
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Figure 4: Arbitrage analysis for WETH-USDC

This Figure plots the price difference conditional on the sign of order flow for the ETH-USDC
pair. We define pd as the price difference between Uniswap ETH-USDC and Binance ETH-
USDC price. We condition price difference and order flow in period 1 and consider six cases of (i)
pdt > 0, swapt+1 < 0, (ii) pdt > 0,markett+1 > 0, (iii) pdt > 0, swapt+1 < 0,markett+ 1 > 0,
(iv) pdt < 0, swapt+1 > 0, (v) pdt < 0,markett+1 < 0, (vi) pdt < 0, swapt+1 > 0, ,markett+1 <
0. We also require that for an arbitrage opportunity, the absolute value of the percentage price
difference should be at least 50 basis points. In Panel (a), we conduct the analysis on the
DEX(5), and in Panel (b), we conduct the analysis on the DEX(30).
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Tables

Table 1: Distribution of absolute distance from lower and upper tick to current
tick

This table presents summary statistics on the absolute distance of liquidity events (mints and burns)
from the current tick in DEX pools. The current tick is derived from the current price. Each liquidity
event is associated with a tick range that includes both lower and upper ticks. We calculate the absolute
distance from both the lower and upper ticks to the current tick separately. The sample period ranges
from 06/05/2021 to 12/07/2022. One tick is equivalent to one basis point of the current price.

DEX(5) DEX(30)

lower upper lower upper

count 50,845 50,845 92,217 92,217
mean 7,802 4,646 8,076 6,053
SD 81,360 46,725 72,379 44,184
min 0 0 0 0
1% 0 1 5 6
5% 3 3 30 31
10% 7 7 64 66
15% 10 10 114 113
20% 23 22 188 177
25% 53 47 307 285
50% 424 367 1,348 1,279
75% 1,554 1,354 4,205 3,943
max 1,094,907 695,697 1,094,047 695,475
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Table 2: Summary statistics: Order flows, trade sizes and trade frequencies

This table reports summary statistics of order flows with non-zero values at a one-minute frequency,
individual trade sizes at the trade level, and trade frequency per minute for both DEX(5) and DEX(30)
pools on Uniswap v3 Ethereum and CEX (Binance) for ETH/USDC pair. market is the market order
flow in the CEX market, swap is the swap order flow from the corresponding DEX pool. We convert
ETH amounts to units of USDC. The sample period ranges from 06/05/2021 to 12/07/2022.

Panel A: Order Flows

Pool variable count mean std Q1 median Q3

DEX(5)
swap(5)buy 440,474 270,559 596,679 8,046 54,901 292,126
swap(5)sell 457,867 260,452 587,113 9,291 55,455 266,105

DEX(30)
swap(30)buy 78,957 364,897 596,957 17,145 184,866 476,399
swap(30)sell 83,313 345,422 589,652 15,100 157,499 441,491

CEX
marketbuy 538,847 21,244 67,310 1,466 6,136 19,297
marketsell 538,853 23,144 79,025 1,631 6,745 20,552

Panel B: Individual trade size

Pool count mean std Q1 median Q3

DEX(5) 2,297,584 103,738 292,735 2,026 10,722 75,000
DEX(30) 281,884 204,282 372,908 9,480 89,988 263,800
CEX 16,081,076 1,488 5,331 139 499 1,324

Panel C: Trade frequency (per minute)

Pool nr.minutes mean std Q1 median Q3

DEX(5) 623,520 3.68 3.17 1.00 3.00 5.00
DEX(30) 623,520 0.45 1.04 0.00 0.00 0.00
CEX 623,520 25.79 47.66 5.00 12.00 28.00
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Table 3: Summary Statistics: Liquidity provision

This table reports summary statistics of market depth (Panel A), liquidity order flows (Panel B), indi-
vidual liquidity order sizes (Panel C) and frequency of liquidity orders submissions (Panel D). For DEX,
market depth is total liquidity deposited within 2% of the current market price. For CEX, market depth
is based on the first best 50 orders on each side. limit is the limit order flow of limit orders submitted
in the CEX market, mint(k) is the flow of submitted (minted) liquidity in the corresponding DEX(k)
pool, burn(k)) is the flow of withdrawn (burned) liquidity in the corresponding DEX(k) pool. bid and
ask superscripts indicate buy and sell orders in ETH token respectively. The sample period ranges
from 06/05/2021 to 12/07/2022. order flows are in one-minute frequency, with ETH amounts converted
to units of USDC. Column count shows number of minutes with non-zero value of the corresponding
variable. Column nr.minutes indicate the total number of minutes in the sample.

Panel A: Depth

Pool variable count mean std Q1 median Q3

DEX(5) depth 623,520 8,955,746 6,412,303 3,798,055 7,712,706 12,790,964

DEX(30) depth 623,520 8,627,426 4,016,923 5,491,296 7,868,373 11,352,665

CEX depth 623,520 448,569 211,116 275,103 429,866 597,985

Panel B: Liquidity order flows

Pool variable count mean std Q1 median Q3

DEX(5)

mint(5)ask 22,573 2,295,159 7,873,420 6,627 41,624 296,452

mint(5)bid 22,126 1,417,988 4,492,749 5,135 36,717 254,486

burn(5)ask 16,012 3,230,590 9,172,056 17,008 94,069 695,685

burn(5)bid 15,038 2,074,864 5,357,197 17,793 98,892 611,266

DEX(30)

mint(30)ask 43,217 532,378 3,545,348 282 5,625 44,334

mint(30)bid 42,623 381,070 2,056,774 221 4,870 41,421

burn(30)ask 25,039 902,611 4,589,663 2,288 20,320 102,665

burn(30)bid 23,890 676,123 2,756,440 2,542 20,766 103,939

CEX
limitask 623,031 18,373 123,576 -26,665 9,235 63,664

limitbid 622,994 20,018 113,044 -21,100 9,777 57,830

Panel C: Individual order size

Pool variable count mean std Q1 median Q3

DEX(5)
mints 27,492 3,026,483 9,061,354 12,389 79,191 504,265

burns 22,993 3,607,647 9,797,380 25,099 120,000 844,549

DEX(30)
mints 55,095 712,495 4,268,669 133 7,585 70,157

burns 37,122 1,044,024 5,169,201 2,957 26,529 131,611

Panel D: Order submission frequency

Pool variable nr.minutes mean std Q1 median max

DEX(5)
mints 0.04 0.23 0 0 0 27

burns 0.04 0.20 0 0 0 7

DEX(30)
mints 0.09 0.36 0 0 0 33

burns 0.06 0.28 0 0 0 10
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Table 4: CIRF of net orders on returns

This table reports the cumulative impulse response function (CIRF) of ETH-USDC returns to a buy

and sell order flow shock in centralized and decentralized exchanges at horizons of n = 0, 1, 10 and

30 minutes. The methodology is based on Hasbrouck (1991a) with order flow of both exchanges and

measures of new liquidity (mints and burns), and the ETH-USDC return. The estimates are the effect of

a 1 USDC Million of corresponding order flow on ETH-USDC Return. market is the market order flow

in the CEX market, swap is the swap order flow from the corresponding DEX pool, limitbest is the limit

order flow of limit orders submitted at the best price in the CEX market, limitaway is the limit order

flow of limit orders submitted away from the best price in the CEX market, mintbest (mintaway) is the

flow of minted liquidity in the corresponding DEX pool within (away from) 5 tick ranges of the current

price, burnbest (burnaway) is the flow of burned liquidity in the corresponding DEX pool within (away

from) 5 tick ranges of the current price. The benchmark return is based on bid-ask prices of Binance

ETH-USDC. The sample period ranges from 06/05/2021 to 12/07/2022. All data are in one-minute

frequency. * denotes significance at a 10 per cent level, ** denotes significance at a 5 per cent level, ***

denotes significance at a 1 per cent level.

n = 0 n = 1 n = 10 n = 30

Panel A: CEX

market 0.142∗∗∗ 0.144∗∗∗ 0.146∗∗∗ 0.126∗∗∗

limitbest −0.092∗∗∗ −0.102∗∗∗ −0.107∗∗∗ −0.317∗∗∗

limitaway 0.069∗∗∗ 0.074∗∗∗ 0.069∗∗∗ 0.074∗∗∗

Panel B: DEX(5)

swap 0.102∗∗∗ 0.118∗∗∗ 0.121∗∗∗ 0.124∗∗∗

mintbest −0.002∗∗∗ −0.004∗∗∗ −0.013∗∗∗ −0.013∗∗∗

mintaway −0.001∗∗∗ 0.000 0.004 0.000
burnbest 0.013∗∗∗ 0.015∗∗∗ 0.024∗∗∗ 0.025∗∗∗

burnaway −0.001∗∗∗ 0.000 −0.003∗ −0.006∗∗∗

Panel C: DEX(30)

swap 0.189∗∗∗ 0.208∗∗∗ 0.207∗∗∗ 0.203∗∗∗

mintbest −0.002∗∗∗ −0.003 0.004 0.010
mintaway −0.001∗∗∗ −0.002 −0.002 −0.007
burnbest 0.014∗∗∗ 0.015∗∗∗ 0.007 0.002
burnaway −0.001∗∗∗ −0.002 −0.005 0.001
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Table 5: CIRF of net orders on returns: Alternative VAR ordering

This table reports the cumulative impulse response function (CIRF) of ETH-USDC returns to a buy
and sell order flow shock in centralized and decentralized exchanges at horizons of 30 minutes. The
methodology is based on Hasbrouck (1991a) with order flow of both exchanges and measures of new
liquidity (mints and burns), and the ETH-USDC return. The estimates are the effect of a 1 USDC
Million of corresponding order flow on ETH-USDC Return. market is the market order flow in the CEX
market, swap is the swap order flow from the corresponding DEX pool, limitbest is the limit order flow
of limit orders submitted at the best price in the CEX market, limitaway is the limit order flow of limit
orders submitted away from the best price in the CEX market,mintbest (mintaway) is the flow of minted
liquidity in the corresponding DEX pool within (away from) 5 tick ranges of the current price, burnbest

(burnaway) is the flow of burned liquidity in the corresponding DEX pool within (away from) 5 tick
ranges of the current price. The benchmark return is based on bid-ask prices of Binance ETH-USDC.

AYt = α+

25∑
j=1

AjYt−j + ϵt,

where

Order 1: Yt = [mint(30)best, mint(30)away burn(30)best, burn(30)away, mint(5)best, mint(5)away,

burn(5)best, burn(5)away, swap(30), swap(5), limitbest, limitaway, market, ret].

Order 2: Yt = [swap(30), swap(5), burn(30)best, burn(30)away, mint(30)best, mint(30)away,

burn(5)best, burn(5)away, mint(5)best, mint(5)away, limitbest, limitaway, market, ret].

Order 3: Yt = [swap(5), swap(30), mint(5)best, mint(5)away, burn(5)best, burn(5)away, mint(30)best,

mint(30)away, burn(30)best, burn(30)away, market, limitbest, limitaway, ret].

Order 4: Yt = [swap(30), swap(5), mint(30)best, mint(30)away, burn(30)best, burn(30)away,

mint(5)best, mint(5)away, burn(5)best, burn(5)away, market, limitbest, limitaway, ret].

In Order 4, we introduce additional VAR restrictions: (1) we allow DEX swap orders to contemporane-

ously affect both DEX mints and burns; (2) we maintain the muting of contemporaneous effects between

DEX mints and burns; and (3) we mute the contemporaneous impact of DEX variables on CEX vari-

ables. The sample period ranges from 06/05/2021 to 12/07/2022. All data are in one-minute frequency.

* denotes significance at a 10 per cent level, ** denotes significance at a 5 per cent level, *** denotes

significance at a 1 per cent level.

Order 1 Order 2 Order 3 Order 4

Panel A: CEX

market 0.060∗∗∗ 0.127∗∗∗ 0.128∗∗∗ 0.127∗∗∗

limitbest −0.146 −0.321∗∗∗ −0.321∗∗∗ −0.318∗∗∗

limitaway 0.091∗∗∗ 0.074∗∗∗ 0.074∗∗∗ 0.074∗∗∗

Panel B: DEX(5)

swap 0.124∗∗∗ 0.124∗∗∗ 0.150∗∗∗ 0.029∗∗∗

mintbest −0.012∗∗∗ −0.025∗∗∗ −0.013∗∗∗ −0.011∗∗

mintaway −0.001 0.001 0.000 0.002
burnbest 0.015∗∗∗ 0.010∗∗ 0.025∗∗∗ 0.012∗∗∗

burnaway −0.008∗∗∗ −0.007∗∗∗ −0.007∗ −0.006∗∗∗

Panel C: DEX(30)

swap 0.203∗∗∗ 0.202∗∗∗ 0.147∗∗∗ 0.044∗∗∗

mintbest 0.012 −0.003 0.011 0.012
mintaway −0.007 −0.006 −0.007 −0.007
burnbest −0.008 −0.012 0.002 −0.012
burnaway 0.001 0.002 0.001 0.002
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Table 6: Variance decomposition

This table reports the forecast error variance decomposition from the Hasbrouck (1991a) VAR in Table

4 at horizons n = 0 and 30 minutes. The sample period ranges from 06/05/2021 to 12/07/2022. All

data are in one-minute frequency.

n = 0 n = 30

Panel A: CEX order flows

market 0.71 0.71
limitbest 0.00 0.01
limitaway 0.37 0.38

Panel B: DEX(5) order flows

swap 9.91 10.03
mintbest 0.05 0.45
mintaway 0.00 0.01
burnbest 0.03 0.04
burnaway 0.00 0.01

Panel C: DEX(30) order flows

swap 14.50 14.47
mintbest 0.01 0.31
mintaway 0.00 0.02
burnbest 0.02 0.02
burnaway 0.00 0.02
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Table 7: CIRF of net order flows: Priority of execution

This table reports the cumulative impulse response (CIRF) of ETH-USDC returns to a buy and sell order

flow shock in decentralized exchanges at 30 minutes horizon. The methodology is based on Hasbrouck

(1991a). The estimates are the effect of a 1 USDC Million of corresponding order flow on ETH-USDC

Return. swap is the swap order flow from the corresponding DEX pool, mintbest (mintaway) is the flow

of minted liquidity in the corresponding DEX pool within (away from) 5 tick ranges of the current price,

burnbest (burnaway) is the flow of burned liquidity in the corresponding DEX pool within (away from) 5

tick ranges of the current price. We classify a transaction into top (denoted as top) if its position index

within the block is smaller than the median position of the distribution, which is 80. A transaction is

classified as a bottom (denoted as bottom) position otherwise. The benchmark return is based on bid-ask

prices of Binance ETH-USDC. The sample period ranges from 06/05/2021 to 12/07/2022. All data are

in one-minute frequency. * denotes significance at a 10 per cent level, ** denotes significance at a 5 per

cent level, *** denotes significance at a 1 per cent level.

Variable CIRF Variable CIRF

swap(5)top 0.119∗∗∗ swap(30)top 0.200∗∗∗

swap(5)bottom 0.146∗∗∗ swap(30)bottom 0.222∗∗∗

mint(5)top,best −0.012∗∗ mint(30)top,best 0.003

mint(5)bottom,best −0.015 mint(30)bottom,best 0.027

mint(5)top,away 0.006 mint(30)top,away 0.018

mint(5)bottom,away −0.001 mint(30)bottom,away −0.013

burn(5)top,best 0.025∗∗∗ burn(30)top,best 0.031∗∗

burn(5)bottom,best 0.027∗ burn(30)bottom,best −0.008

burn(5)top,away −0.006∗∗ burn(30)top,away −0.033∗∗

burn(5)bottom,away −0.008∗∗∗ burn(30)bottom,away 0.014
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Table 8: CIRF of net order flows: Size

This table reports the cumulative impulse response (CIRF) of ETH-USDC returns to a buy and sell order

flow shock in decentralized exchanges at 30 minutes horizon. The methodology is based on Hasbrouck

(1991a). The estimates are the effect of a 1 USDC Million of corresponding order flow on ETH-USDC Re-

turn. marketbuy (marketsell) is the market buy (sell) order flow in the CEX market, swapbuy (swapsell)

is the swap buy (sell) order flow from the corresponding DEX pool, limitbest is the limit order flow

of limit orders submitted at the best price in the CEX market, limitaway is the limit order flow of

limit orders submitted away from the best price in the CEX market, mintbest (mintaway) is the flow of

minted liquidity in the corresponding DEX pool within (away from) 5 tick ranges of the current price,

burnbest (burnaway) is the flow of burned liquidity in the corresponding DEX pool within (away from)

5 tick ranges of the current price. This table classifies orders based on the size of submitted orders.

For marketsell and swapsell (marketbuy and swapbuy) orders, we classify sell (buy) order flows as large

(denoted as large) if the sell (buy) order flow exceeds the median size of the distribution of non-zero

minute-level sell (buy) order flows, which is 15,661 (14,160) USDC for sell (buy) order flows. For mintbest

and mintaway (burnbest and burnaway), we classify mint (burn) order flows as large (denoted as large)

if the mint (burn) order flow is greater than the median size of the distribution of transaction-level mint

(burn), which is 19,478 (48,810) USDC for mint (burn) orders. The benchmark return is based on bid-ask

prices of Binance ETH-USDC. The sample period ranges from 06/05/2021 to 12/07/2022. All data are

in one-minute frequency. * denotes significance at a 10 per cent level, ** denotes significance at a 5 per

cent level, *** denotes significance at a 1 per cent level.

Variable CIRF Variable CIRF Variable CIRF

marketlarge,sell −0.099*** swap(5)large,sell −0.068*** swap(30)large,sell −0.141***
marketsmall,sell −0.362 swap(5)small,sell 1.921*** swap(30)small,sell 1.246
marketlarge,buy 0.138*** swap(5)large,buy 0.123*** swap(30)large,buy 0.216***
marketsmall,buy 0.343 swap(5)small,buy −1.07 *** swap(30)small,buy −3.649***
limitbest −0.331*** mint(5)Large,best −0.014*** mint(30)Large,best 0.011
limitaway 0.074*** mint(5)Small,best 6.657 mint(30)Small,best 0.911

mint(5)Large,away 0.000 mint(30)Large,away −0.007
mint(5)Small,away −1.427 mint(30)Small,away −1.135
burn(5)Large,best 0.024*** burn(30)Large,best 0.001
burn(5)Small,best −1.610 burn(30)Small,best −0.549
burn(5)Large,away −0.007*** burn(30)Large,away 0.001
burn(5)Small,away 0.084 burn(30)Small,away 0.024
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Table 9: CIRF of net order flows: Combined orders strategies

This table reports the cumulative impulse response (CIRF) of ETH-USDC returns to a buy and sell order
flow shock in decentralized exchanges at 30 minutes horizon. The methodology is based on Hasbrouck
(1991a). The estimates are the effect of a 1 USDC Million of corresponding order flow on ETH-USDC
Return. swap is the swap order flow from the corresponding DEX pool, mintbest (mintaway) is the
flow of minted liquidity in the corresponding DEX pool within (away from) 5 tick ranges of the current
price, burnbest (burnaway) is the flow of burned liquidity in the corresponding DEX pool within (away
from) 5 tick ranges of the current price. Panel A classifies wallets into mixed or using only type of
orders. We classify LPs submitting the order as using mixed type orders strategy (denoted as mixed) if
there is a swap and a liquidity order (mint or burn) submitted by the same wallet. Otherwise, a swap
order is classified as onlyswap and liquidity order is classified as onlylp. Panel B classifies orders as
repositioning repo if a burn order is followed by a mint orders within 2 minutes time coming form the
same wallet. Otherwise, it is classified as other. Panel C classifies orders by frequency of submission by a
wallet. Wallets which update their liquidity more times than the upper quartile of the distribution of the
number of liquidity updates in the sample (which is 4) are classified as frequent (highfr). Otherwise, the
wallet and all its liquidity orders are classified as infrequent (lowfr). The benchmark return is based on
bid-ask prices of Binance ETH-USDC. The sample period ranges from 06/05/2021 to 12/07/2022. All
data are in one-minute frequency. * denotes significance at a 10 per cent level, ** denotes significance
at a 5 per cent level, *** denotes significance at a 1 per cent level.

Panel A: Mixed order types vs pure liquidity provision

Variable CIRF Variable CIRF

swap(5)mixed 0.109∗∗∗ swap(30)mixed 0.222∗∗∗

swap(5)onlyswap 0.119∗∗∗ swap(30)onlyswap 0.183∗∗∗

mint(5)mixed,best −0.015∗∗∗ mint(30)mixed,best 0.009
mint(5)onlylp,best 0.002 mint(30)onlylp,best 0.027
mint(5)mixed,away 0.000 mint(30)mixed,away −0.008
mint(5)onlylp,away 0.011 mint(30)onlylp,away −0.009
burn(5)mixed,best 0.025∗∗∗ burn(30)mixed,best 0.003
burn(5)onlylp,best 0.043 burn(30)onlylp,best −0.039
burn(5)mixed,away −0.007∗∗∗ burn(30)mixed,away 0.002
burn(5)onlylp,away 0.004 burn(30)onlylp,away −0.004

Panel B: Liquidity repositioning

Variable CIRF Variable CIRF

swap(5) 0.124∗∗∗ swap(30) 0.202∗∗∗

mint(5)repo,best −0.015∗∗ mint(30)repo,best 0.015
mint(5)other,best −0.001 mint(30)other,best −0.004
mint(5)repo,away −0.002 mint(30)repo,away −0.007
mint(5)other,away 0.001 mint(30)other,away −0.006
burn(5)repo,best 0.027∗∗∗ burn(30)repo,best 0.003
burn(5)other,best −0.002 burn(30)other,best −0.015
burn(5)repo,away 0.002 burn(30)repo,away 0.000
burn(5)other,away −0.008∗∗∗ burn(30)other,away 0.002
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Table 9 – continued from previous page

Panel C: Frequency of liquidity orders
Variable CIRF Variable CIRF

swap(5) 0.124∗∗∗ swap(30) 0.202∗∗∗

mint(5)highfr,best −0.012∗∗ mint(30)highfr,best 0.011
mint(5)lowfr,best −0.057∗ mint(30)lowfr,best −0.021
mint(5)highfr,away 0.001 mint(30)highfr,away −0.008
mint(5)lowfr,away 0.002 mint(30)lowfr,away 0.019
burn(5)highfr,best 0.023∗∗∗ burn(30)highfr,best 0.001
burn(5)lowfr,best 0.057∗ burn(30)lowfr,best 0.024
burn(5)highfr,away −0.006∗∗ burn(30)highfr,away −0.004
burn(5)lowfr,away 0.018 burn(30)lowfr,away 0.364
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Table 10: Summary statistics of price difference

This table reports summary statistics of the price difference between the DEX and WETH/USDC 0.3%

on Uniswap v3 Ethereum) and CEX (ETH/USDC pair traded on Binance) exchanges. Panel A (DEX(5)

market) summarizes the price differences based on WETH/USDC 0.05% price and Panel B (DEX(30)

market) corresponds to the price difference based on WETH/USDC 0.30% price. Price difference is

defined as pd = prcDEX−prcCEX while percentage price difference is defined as ppd = 100×pd/prcCEX .

All data are in one-minute frequency, with ETH amounts converted to units of USDC. The sample period

ranges from 06/05/2021 to 12/07/2022.

Panel A: DEX(5)

count mean std min Q1 median Q3 max

pd 623,520 0.047 10.433 −398.545 −1.563 −0.048 1.458 564.679

|pd| 623,520 3.093 9.964 0.000 0.672 1.511 2.825 564.679

ppd 623,520 0.005 0.428 −24.841 −0.056 −0.002 0.053 28.602

|ppd| 623,520 0.108 0.414 0.000 0.027 0.055 0.092 28.602

Panel B: DEX(30)

in % count mean std min Q1 median Q3 max

pd 623,520 −0.015 10.540 −462.506 −4.582 −0.230 4.062 304.004

|pd| 623,520 5.516 8.981 0.000 2.027 4.323 7.415 462.506

ppd 623,520 0.004 0.415 −28.389 −0.169 −0.009 0.154 13.993

|ppd| 623,520 0.189 0.369 0.000 0.079 0.162 0.253 28.389
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Table 11: Order flow and arbitrage trading

This table examines relationship between price difference across CEX and DEX and the flows of different

types of orders. Panel A reports the cumulative impulse response function (CIRF) of the price difference

to an order flow shock at horizons of n = 0 and 30 minutes. The price difference is measured as

the difference in the Uniswap and the Binance ETH-USDC. Panel B reports the CIRF of ETH-USDC

returns to a buy and sell order flow shock conditioned on the price difference between the DEX and CEX

exchange. The methodology is based on Hasbrouck (1991a) and estimates the effect of a 1 USDC Million

of corresponding order flow shock. market is the buy or sell market order flow in the CEX market,

swap is the buy or sell swap order flow from the corresponding DEX pool, limit is the limit order flow

submitted in the CEX market, newliq is the new net liquidity provided in the corresponding DEX pool

and defined as newliq = mint − burn with mint is the flow of submitted (minted) liquidity and burn

is the flow of withdrawn (burned) liquidity in the DEX market. The percentage of price difference is

defined as ppp = 100×(prcDEX−prcCEX)/prcCEX where prcDEX is taken from the corresponding DEX

pool. Order flows are conditioned on ppp, where highpd (lowpd) represents values 50 bps above (below)

of average ppp. The sample period ranges from 06/05/2021 to 12/07/2022. All data are in one-minute

frequency. *, ** and *** denote significance at 10, 5 and 1 per cent levels respectively.

DEX(5) DEX(30)

n = 0 n = 30 n = 0 n = 30

Panel A: CIRF of order flow on price difference

marketsell 2.976∗∗∗ 8.201 3.400∗∗∗ 26.766∗∗∗

marketbuy −3.452∗∗∗ −60.100∗∗∗ −4.132∗∗∗ −58.830∗∗∗

swapsell −0.717∗∗∗ −7.801∗∗∗ −1.408∗∗∗ −59.614∗∗∗

swapbuy 1.181∗∗∗ 13.828∗∗∗ 1.180∗∗∗ 62.787∗∗∗

limitask,best 2.564∗∗∗ 134.784∗∗∗ 4.662∗∗∗ 73.789

limitbid,best −1.372∗∗∗ −11.196 −0.633∗∗∗ −24.443

newliqask,best −0.010∗∗∗ −1.627∗ 0.034∗∗∗ −2.184

newliqbid,best −0.020∗∗∗ 1.979∗ −0.121∗∗∗ −3.484

Panel B: CIRF of order flow on return conditional on price difference

marketsell,highpd −0.272∗∗∗ −0.172∗ −0.226∗∗∗ −0.066

marketsell,lowpd −0.121∗∗∗ −0.116∗∗∗ −0.134∗∗∗ −0.151∗∗∗

marketbuy,highpd 0.325∗∗∗ 0.502∗∗∗ 0.319∗∗∗ 0.697∗∗∗

marketbuy,lowpd 0.125∗∗∗ 0.105∗∗∗ 0.144∗∗∗ 0.101∗∗∗

swapsell,highpd −0.016∗∗∗ −0.079∗∗∗ −0.097∗∗∗ −0.089∗∗∗

swapsell,lowpd −0.057∗∗∗ −0.086∗∗∗ −0.138∗∗∗ −0.178∗∗∗

swapbuy,highpd 0.096∗∗∗ 0.166∗∗∗ 0.203∗∗∗ 0.245∗∗∗

swapbuy,lowpd 0.135∗∗∗ 0.158∗∗∗ 0.191∗∗∗ 0.224∗∗∗

limitask,best,highpd −0.272∗∗∗ −0.172∗ −0.226∗∗∗ −0.066

limitask,best,lowpd −0.121∗∗∗ −0.116∗∗∗ −0.134∗∗∗ −0.151∗∗∗

limitbid,best,highpd 0.325∗∗∗ 0.502∗∗∗ 0.319∗∗∗ 0.697∗∗∗

limitbid,best,lowpd 0.125∗∗∗ 0.105∗∗∗ 0.144∗∗∗ 0.101∗∗∗

newliqask,best,highpd −0.016∗∗∗ −0.079∗∗∗ −0.097∗∗∗ −0.089∗∗∗

newliqask,best,lowpd −0.057∗∗∗ −0.086∗∗∗ −0.138∗∗∗ −0.178∗∗∗

newliqbuy,best,highpd 0.096∗∗∗ 0.166∗∗∗ 0.203∗∗∗ 0.245∗∗∗

newliqbuy,best,lowpd 0.135∗∗∗ 0.158∗∗∗ 0.191∗∗∗ 0.224∗∗∗
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Internet Appendix to

“Price Discovery in Cryptocurrencies:

Centralized versus Decentralized Markets”

(Not for publication)

A Trading mechanics on Uniswap v3

Compared to Uniswap V2, Uniswap V3 seeks to improve “capital efficiency” of liquidity

providers, by allowing them to set specific price ranges for their liquidity positions. When

they submit a new liquidity position, they have to specify a price range, [pa, pb], where pa

is the minimum price and pb - the maximum price of token X in units of token Y at which

their position is active. The price curve for Uniswap v3 is a modification of x · y = k,

such that the position is solvent exactly within its price range:15

(x+
L

√
pb
)(y + L

√
pa) = L2, (8)

where L is the (virtual) liquidity within the price range [pa, pb]; x and y are the quantities

of tokens X and Y deposited within this price range. In contrast to Uniswap V2, the

amount of tokens deposited in a liquidity position is no longer in 50-50 ratio. In fact, it

depends on the position of the price range relative to the current market price, pM , with

larger reserves of X required if the price range is skewed to prices higher than the current

price. If the preferred price range is strictly higher than the current price (and excludes

it), then liquidity provider only has to deposit X token. Similarly, if the preferred price

range is strictly lower than the current price, then liquidity provider only has to deposit

Y token.

In Uniswap V3, the space of prices is divided into discrete ticks, i (i ϵ Z). There can

be a tick at every price p that is an integer power of 1.0001, such that the following

15. Source: Uniswap v3 whitepaper available at https://uniswap.org/whitepaper-v3.pdf
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relation holds for the price p at tick i:

pi = 1.0001i. (9)

Specifically, this relation implies that each tick is 1 bp (basis point) away from its neigh-

bouring ticks. However, not all ticks can be initialized, but only those that are divisible

by a pre-specified tick spacing parameter. For example, USDC/ETH 0.3% pool has a

tick spacing of 60. Therefore, only ticks that are divisible by 60 can be initialized for this

pool, i.e. (-120, -60, 0, 60, 120...). A tick range can then be defined as [i, i+ l],where l is

the length of the tick range, equal to tick spacing. One liquidity position of a liquidity

provider can cover one or more tick ranges, [i, i + l]. The liquidity on each tick range

[i, i + l], Li, is then an aggregation of all liquidity provider positions that are currently

active on it. Therefore, aggregate liquidity in a Uniswap V3 pool is no longer constant

(as in Uniswap V2), but fragmented across multiple tick ranges.

From Uniswap V3 whitepaper (Adams et al. 2021), we obtain the following relations

for xi, quantity of tokens X locked in the tick range [i, i + l], and yi, quantity of tokens

Y locked in the same tick range:

xi =
Li√
zi

− Li√
pi+l

(10)

yi = Li · (
√
zi −

√
pi), (11)

where zi =


pi if pM ≤ pi

pM if pi < pM < pi+l

pi+l if pi+l ≤ pM .
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