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Organisation- Blended learning

• 3 hours of learning a week, the 1 + 1 + 1 system of blended learning
1 1 hour of live lectures
2 1 hour of pre-recorded material
3 1 hour of seminars

• To do well, it is expected students continually revise topics and keep
up with lectures and pre-recorded material.

• Pre-recorded material for the week is to be reviewed after the live
lecture.

• Theory solutions for the seminar is covered in pre-recorded material
for that week. Please have a go at solving the theory questions before
reviewing this video!

• In addition, I will use Vevox questions during lecture to engage
student understanding.
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Organisation

• Lecture: Monday 2pm-3pm M1

• Seminars: (Starting week 3)

1 Thursday 9am-10am 1.007
2 Thursday 12pm-1pm 1.007
3 Thursday 2pm-3pm 1.007
4 Thursday 3pm-4pm 1.007
5 Thursday 4pm-5pm 1.007

• Lectures will go through the theory, seminars will go through empirical
methods using Matlab, the recommended language of the course

• You are welcome to use Python/R, however I do not expect you to
use it during the course
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Organisation- the Team

Lecturer

• Ganesh Viswanath-Natraj

• Email: ganesh.viswanath-natraj@wbs.ac.uk

• Office Hours: Monday 4pm-6pm 2.209

Seminar TA

• Junxuan Wang

• Email: junxuan.wang.19@mail.wbs.ac.uk

• Office Hours: Thursday 1pm-3pm PhD office 2.008
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Organisation- Assessment

The structure of the course is 70% final exam, 20% group project and
10% class test.
Group Project (20%)

• 4 Questions in topics of econometric forecasting and cointegration,
volatility modeling, PCA and factor analysis, and a 2 page research
proposal on a topic in empirical finance.

• Submit names (5-6 people) to FinancePG@wbs.ac.uk by Monday 30th
January.

• If you do not sort into groups by then, you will be randomized by the
Masters office. Final group listings will be released early February.

• Expect release of project early February, and due date: online
submission 30th March, 12pm.
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Organisation- Assessment

Class Test (10%):

• Multiple Choice questions, theory and empirical

• Will cover topics 1 through to topics 4

• Date: Friday 3rd March, 9:15am-10am, more details provided
closer to date.

Final Exam (70%):
• Details of Exam time/venue TBD
• Exam will cover all topics 1-9, mix of theory and empirical questions
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Course Objectives

• Learn a series of econometric methods (VECM, volatility modeling)

• Learn how to apply these methods to financial data

• Learn a range of empirical stylised facts drawn from the analysis of
financial markets; the rates, models of equity returns, the yield curve
and exchange rates

• Learn how to test asset pricing models, (CAPM, Fama French,
Consumption asset pricing models)
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Lecture Topics

1 Time Series Fundamentals : ACF, PACF, ARMA, Lag-Operator,
Stationarity, Information Criteria, Unit-Root Testing

2 Time Series Forecasting: Cointegration, VECM, model evaluation,
empirical application: exchange rate forecasting

3 Volatility Modeling: Historical Volatility and Bloomberg Risk Metrics,
ARCH, GARCH processes. Forecasting Volatility, Asymmetric
Volatility Modeling

4 Value at Risk and Non-Normality: VaR models, non-normality (QQ
Plot)
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Lecture Topics

5 Capital Asset Pricing Model: Fama French Factors, Portfolio
Analysis, Fama MacBeth

6 Factor analysis: Empirical application: factor analysis of currency
excess returns. PCA

7 Generalized Method of Moments (GMM): Theory, Asymptotic
properties, empirical application: estimating parameters of
consumption asset pricing model.

8 Monte Carlo Simulations: Empirical applications: Black Scholes
options pricing under normality and non-normality

9 Panel Data, Binary Dependent Variable Models: Empirical
applications: Banking Competition, Predicting Default
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Text Book

Recommended text

• Brooks, C. Introductory Econometrics for Finance (2019). Cambridge
University Press.

Supplementary texts

• Ruppert,D. and Matteson,D. Statistics and Data Analysis for
Financial Engineering with R Examples, 2nd edition, Springer, 2015.

• Campbell, J.Y., Lo, A.W. and MacKinley, A.C. (1997), The
Econometrics of Financial Markets, Princeton.

• Enders, W. (2009), Applied Econometric Time Series, Wiley.

• Cochrane, J, Time Series Notes,
https://faculty.chicagobooth.edu/john.cochrane/research
/Papers/time series book.pdf.
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Topic 8: Monte Carlo Simulations

• Can we numerically estimate the Black Scholes formula using the
Monte Carlo method?

• Simulate the path of St from today until time to expiry, using the
following formula for the stock price

St = St−1 · e((r−
1
2
·σ2)·δt+σ·

√
δt ·Zt)

• For N simulations, we calculate the payoff at time to expiry T − t,
Π = max(ST − X , 0). The average discounted payoff over N is the
value of the Call–this will be numerically equivalent to using Black
Scholes formula.

Ĉt = e−r(T−t)
∑N

i=1 Πi

N
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Topic 8: Monte Carlo Simulations
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Roadmap of Lecture

• Definitions: Stationarity, Autocorrelation Function, Autoregressive
(AR) and Moving Average (MA) processes

• Box-Jenkins approach for ARMA model selection

• Application: Modeling of SP 500 returns as an ARMA process

• Reference: Brooks Chapter 6
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Definition: Types of Data

• Time series are data on one variable collected over time.
T > 1,N = 1

• Examples: inflation or unemployment (monthly frequency),
government budget deficit (annual) or stock price indices (intra-day
frequency).

• Cross-sectional data are data on one or more variables collected at a
single point in time.T = 1,N > 1

• Examples: consumption of households in the UK. Cost of all items in
a grocery store.

• Panel data has dimensions of both time series and cross-sections.
T > 1,N > 1

• Examples: a census survey of income of multiple households
(i = 1, 2, ...,N) over multiple years (t = 1, 2, ...,T )
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Definition: White Noise process

• A process εt is called a white noise (WN) process if has zero mean,
constant variance, and the shocks are independent and identically
distributed over time, also known as i.i.d.

1 E[εt ] = 0
2 E[εtεt−1] = cov(εt , εt−1) = 0
3 var(εt) = var(εt |εt−1, εt−2, ...) = σ2

ε

• If εt ∼ N(0, σ2ε ), then εt is called Normal White Noise (NWN)

• White noise processes are the building blocks of all time series!
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Definition: White Noise process
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Definition: Strict Stationarity

• A process is strictly stationary if, for any values of j1, j2, ...., jn the
joint distribution of yt , yt+j1 , ...., yt+jn depends only on the intervals
separating the dates (j1, j2, ...jn) and not on the dates themselves (t)

• Strict stationarity requires that the joint distribution of a stochastic
process does not depend on time

• The only factor affecting the relationship between two observations is
the gap between them.

• Strict stationarity is weaker than i.i.d since the process maybe serially
correlated over time.
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Definition: Weak Stationarity

• A process is covariance stationary if

E[yt ] = µ <∞ ∀t

var [yt ] = σ2 <∞ ∀t

cov(yt , yt+s) = γs ∀t, s

• Covariance stationarity requires that both the unconditional mean and
unconditional variance are finite and do not change over time

• Covariance stationarity does not necessarily imply strict stationarity
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Definition: Lag Operator

• Lag operator is a convention used to denote lags of a time series
variable

Lyt = yt−1

L2yt = yt−2

Ljyt = yt−j

• Lag polynomial

φ(L) = 1 + φL + φ2L2 + ...

• Difference operator (we will come back to this next week!)

∆yt = yt − yt−1 = (1− L)yt
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Example: Daily Stock Returns
Taking log of S&P 500, we find that SP data is non-stationary. It has an
upward trend, suggesting that the mean (level) of the index is time variant
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Example: Daily Stock Returns
We can construct stock returns, i.e. taking the first difference in logs.
Rt = log(St)− log(St−1)
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Example: Daily Stock Returns

Histograms suggest that returns can be approximated by a normal
distribution, with fat tails
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Autocorrelation Function

• Financial time series typically exhibit serial correlation. Knowing
today’s stock price helps to forecast tomorrow’s stock price

• Autocovariance function

γj = cov(yt , yt−j) = E[(yt − µ)(yt−j − µ)]

• Autocorrelation function:
τj =

γj
γ0

• We can trace the autocorrelation function of a series as τj , and plot
for j = 0, 1, 2, ...

• The autocorrelation plot gives us a sense of how backward looking a
series is, i.e. how much of today’s value is dependent on past
information?

Lecture 1: Fundamentals of Time Series 23 / 39



Autocorrelation Function: intuition

• Consider a regression of yt on yt−j

yt = φjyt−j + εt

• Assuming E[yt ] = 0 and var(yt) = σ2

E[φ̂j ] =
cov(yt , yt−j)

var(yt)
= τj

• Autocorrelation coefficients are regression coefficients

• τj measures the unconditional correlation between yt and yt−j
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Autocorrelation Function: testing
significance

• Testing whether single autocorrelation coefficient is zero

• Under H0, τj = 0:
√
T τ̂j → N(0, 1)

• A 95% confidence interval for τ̂ is given by +− 1.96√
T

• Test whether the first h autocorrelation coefficients are jointly zero:
Ljung/Box test statistic

Q = T (T + 2)
h∑

k=1

τ̂k
2

T − k
→ χ2

h
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Partial Autocorrelation Function

• Now consider the regressions

yt = φ1,1yt−1 + εt

yt = φ1,2yt−1 + φ2,2yt−2 + εt

• φ1,1 measures the unconditional correlation between yt and yt=1

• φ2,2 measures the correlation between yt and yt−2 net of the
correlation between yt and yt−1
• α2 = φ2,2 is the partial autocorrelation coefficient
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Partial Autocorrelation Function

• The partial autocorrelation coefficient αj measures the correlation of
yt and yt−j net of the autocorrelations 1 to j-1

• Consider the recursive system

yt = φ1,1yt−1 + εt

yt = φ1,2yt−1 + φ2,2yt−2 + εt

yt = φ1,jyt−1 + φ2,jyt−2 + ...+ φj ,jyt−j + εt

• αj = φj ,j is the measure of the marginal correlation of yt and yt−j net
of the correlation between yt and yt−1, yt−2, ...yt−j+1
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ACF and PACF Function of White Noise
process

yt = εt εt ∼ N(0, 1)
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Definition: Autoregressive Process

• An Autoregressive process of order 1, or AR(1)

yt = µ+ φyt−1 + εt , εt ∼WN(0, σ2ε )

E[yt ] =
µ

1− φ1
• Question: What happens when φ > 1?

• An Autoregressive process of order p, or AR(p)

yt = µ+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt , εt ∼WN(0, σ2ε )

E[yt ] =
µ

1− φ1 − φ2 − ...− φp
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Conditions for Stationarity: AR

• For an AR(1) process,

yt = φyt−1 + εt =⇒ |φ| < 1

• For an AR(p) process, the p roots of the following polynomial must
lie outside the unit circle

(1− φ1L− ...− φpLp)yt = εt

(1− λ1L)....(1− λpL)yt = εt

=⇒ |λi | < 1∀i
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Simulation of AR(1) process

We plot simulated series for φ = 0.5 and φ = 0.95. Note that φ = 0.95 is
much more persistent, whereas φ = 0.5 is closer to a white noise process

0 200 400 600 800
1000

Time Periods

4

3

2

1

0

1

2

3

Yt

AR(1) model,phi=0.5

0 200 400 600 800
1000

Time Periods

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Yt

AR(1) model,phi=0.95

Lecture 1: Fundamentals of Time Series 31 / 39



ACF and PACF Function of AR(1)

yt = 0.5yt−1 + εt εt ∼ N(0, 1)
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ACF and PACF Function of AR(1)

yt = 0.95yt−1 + εt εt ∼ N(0, 1)

Higher persistence of φ = 0.95 is seen through more gradual decay of ACF.
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Moving Average Process

• A Moving Average process of order 1, or MA(1)

yt = µ+ εt ,+θ1εt−1, εt ∼WN(0, σ2ε )

• MA(q) process

yt = µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

• The moving average process is covariance stationary if and only if

q∑
j=0

θ2j <∞
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ACF and PACF Function of MA(1)

yt = 0.5εt−1 + εt εt ∼ N(0, 1)
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Heuristics with Autocorrelation and Partial
Autocorrelation Functions

We can deduce the length of an AR and MA process by examining the
ACF and PACF of a time series.

• An autoregressive process has

1 A geometrically decaying ACF
2 A number of significant coefficients of PACF = AR order

• A moving average process has

1 A number of significant coefficients of ACF= MA order
2 A geometrically decaying PACF
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ACF and PACF for an AR(3)

yt = 0.5yt−1 + 0.3yt−2 + 0.1yt−3 + εt εt ∼ N(0, 1)
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ACF and PACF for an MA(3)

yt = 0.9εt−1 + 0.7εt−2 + 0.5εt−3 + εt εt ∼ N(0, 1)
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Recap and Looking Forward

• We have covered the following fundamentals of time series

1 AR, MA processes
2 Using ACF and PACF to deduct time series properties
3 We also covered an important property of time series, stationarity.

• Please follow pre-recorded material in week 2:

1 ARMA and the Box-Jenkins approach.
2 Maximum Likelihood Estimation (MLE).

• ARMA is a combination of AR and MA processes.

• Box Jenkins is a procedure used to identify, estimate and check an
AR/MA process.

• MLE is an alternative method to OLS–and is particularly useful to
estimate parameters of a MA(q) process.

• Next week: Vector error correction models (VECM) use a method of
cointegration: which takes a linear combination of two series to
generate a stationary series.
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