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Organisation- Blended learning WARWICK

3 hours of learning a week, the 1 4+ 1 4 1 system of blended learning
@ 1 hour of live lectures
® 1 hour of pre-recorded material
® 1 hour of seminars
® To do well, it is expected students continually revise topics and keep
up with lectures and pre-recorded material.

® Pre-recorded material for the week is to be reviewed after the live
lecture.

® Theory solutions for the seminar is covered in pre-recorded material
for that week. Please have a go at solving the theory questions before
reviewing this video!

® In addition, | will use Vevox questions during lecture to engage
student understanding.
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Organisation THE UNIVERSITY OF

WARWICK

Lecture: Monday 2pm-3pm M1

Seminars: (Starting week 3)

@ Thursday 9am-10am 1.007
® Thursday 12pm-1pm 1.007
© Thursday 2pm-3pm 1.007
@ Thursday 3pm-4pm 1.007
® Thursday 4pm-5pm 1.007

Lectures will go through the theory, seminars will go through empirical
methods using Matlab, the recommended language of the course

® You are welcome to use Python/R, however | do not expect you to
use it during the course
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Organisation_ the Team THE UNIVERSITY OF

WARWICK

Lecturer
® Ganesh Viswanath-Natraj
® Email: ganesh.viswanath-natraj@wbs.ac.uk
e Office Hours: Monday 4pm-6pm 2.209
Seminar TA
¢ Junxuan Wang
¢ Email: junxuan.wang.19@mail.wbs.ac.uk
e Office Hours: Thursday 1pm-3pm PhD office 2.008

Lecture 1: Fundamentals of Time Series 4 /39



Organisation- Assessment WARWICK

The structure of the course is 70% final exam, 20% group project and
10% class test.
Group Project (20%)
® 4 Questions in topics of econometric forecasting and cointegration,
volatility modeling, PCA and factor analysis, and a 2 page research
proposal on a topic in empirical finance.

® Submit names (5-6 people) to FinancePG@wbs.ac.uk by Monday 30th
January.

¢ If you do not sort into groups by then, you will be randomized by the
Masters office. Final group listings will be released early February.

e Expect release of project early February, and due date: online
submission 30th March, 12pm.
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Organisation- Assessment WARWICK

Class Test (10%):
e Multiple Choice questions, theory and empirical
e Will cover topics 1 through to topics 4
¢ Date: Friday 3rd March, 9:15am-10am, more details provided
closer to date.
Final Exam (70%):

® Details of Exam time/venue TBD
® Exam will cover all topics 1-9, mix of theory and empirical questions
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Course Objectives THE UNIVERSITY OF

WARWICK

® Learn a series of econometric methods (VECM, volatility modeling)
® |earn how to apply these methods to financial data

® Learn a range of empirical stylised facts drawn from the analysis of
financial markets; the rates, models of equity returns, the yield curve
and exchange rates

® Learn how to test asset pricing models, (CAPM, Fama French,
Consumption asset pricing models)
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Lecture Topics WARWICK

@ Time Series Fundamentals : ACF, PACF, ARMA, Lag-Operator,
Stationarity, Information Criteria, Unit-Root Testing

® Time Series Forecasting: Cointegration, VECM, model evaluation,
empirical application: exchange rate forecasting

© Volatility Modeling: Historical Volatility and Bloomberg Risk Metrics,
ARCH, GARCH processes. Forecasting Volatility, Asymmetric
Volatility Modeling

@ Value at Risk and Non-Normality: VaR models, non-normality (QQ
Plot)
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Lecture Topics THE UNIVERSITY OF

WARWICK

©® Capital Asset Pricing Model: Fama French Factors, Portfolio
Analysis, Fama MacBeth

@® Factor analysis: Empirical application: factor analysis of currency
excess returns. PCA

@ Generalized Method of Moments (GMM): Theory, Asymptotic
properties, empirical application: estimating parameters of
consumption asset pricing model.

® Monte Carlo Simulations: Empirical applications: Black Scholes
options pricing under normality and non-normality

© Panel Data, Binary Dependent Variable Models: Empirical
applications: Banking Competition, Predicting Default
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Recommended text
® Brooks, C. Introductory Econometrics for Finance (2019). Cambridge
University Press.
Supplementary texts
® Ruppert,D. and Matteson,D. Statistics and Data Analysis for
Financial Engineering with R Examples, 2nd edition, Springer, 2015.
e Campbell, J.Y., Lo, AW. and MacKinley, A.C. (1997), The
Econometrics of Financial Markets, Princeton.
e Enders, W. (2009), Applied Econometric Time Series, Wiley.
e Cochrane, J, Time Series Notes,
https://faculty.chicagobooth.edu/john.cochrane/research
/Papers/time_series_book.pdf.
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Topic 8: Monte Carlo Simulations WAWICK

e Can we numerically estimate the Black Scholes formula using the
Monte Carlo method?

e Simulate the path of S; from today until time to expiry, using the
following formula for the stock price

Se =51 e((r—%‘a2).5t+g.\/§zt)

e For N simulations, we calculate the payoff at time to expiry T —t,
M = max(St — X,0). The average discounted payoff over N is the
value of the Call-this will be numerically equivalent to using Black
Scholes formula.

N
N A
C — —r(T—t) ZI:]_ 1
t= € N
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Topic 8: Monte Carlo Simulations WARWICK

Monte Carlo Simulations of Stock Returns
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Roadmap Of Lecture THE UNIVERSITY OF

WARWICK

e Definitions: Stationarity, Autocorrelation Function, Autoregressive
(AR) and Moving Average (MA) processes

® Box-Jenkins approach for ARMA model selection
e Application: Modeling of SP 500 returns as an ARMA process
e Reference: Brooks Chapter 6
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Definition: Types Of Data THE UNIVERSITY OF

WARWICK

e Time series are data on one variable collected over time.
T>1,N=1

e Examples: inflation or unemployment (monthly frequency),
government budget deficit (annual) or stock price indices (intra-day
frequency).

® Cross-sectional data are data on one or more variables collected at a
single point in time. T =1, N > 1

® Examples: consumption of households in the UK. Cost of all items in
a grocery store.

® Panel data has dimensions of both time series and cross-sections.
T>1,N>1

® Examples: a census survey of income of multiple households
(i=1,2,...,N) over multiple years (t =1,2,..., T)
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Definition: White Noise process WAW]CK

® A process ¢; is called a white noise (WN) process if has zero mean,
constant variance, and the shocks are independent and identically
distributed over time, also known as i.i.d.
® Ele;] =0
@ Elerer—1] = cov(er,ee-1) =0
© var(e;) = var(et|er—1, €2, ...) = 02

® If ¢, ~ N(0,02), then ¢; is called Normal White Noise (NWN)

® White noise processes are the building blocks of all time series!
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Definition: White Noise process WARWICK

White Noise
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Definition: Strict Stationarity

WA K\/\J/ICK
® A process is strictly stationary if, for any values of ji, jo, ...., jn the
joint distribution of y;, yt1j,...., ¥+, depends only on the intervals

separating the dates (j1, 2, ...jn) and not on the dates themselves (t)

e Strict stationarity requires that the joint distribution of a stochastic
process does not depend on time

® The only factor affecting the relationship between two observations is
the gap between them.

® Strict stationarity is weaker than i.i.d since the process maybe serially
correlated over time.
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Definition: Weak Stationarity WARWICK

® A process is covariance stationary if

Ely:] =p < oo vt
var[y] = 02 < 00 vt

cov(yt, Yits) = Vs Vt,s

e Covariance stationarity requires that both the unconditional mean and
unconditional variance are finite and do not change over time

e Covariance stationarity does not necessarily imply strict stationarity
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Definition: Lag Operator THE UNIVERSITY OF

WA K\/\LICK
® |ag operator is a convention used to denote lags of a time series
variable
Lyt =yt
L2Yt = Yt-2
Lj)/t = Yt—j

® |Lag polynomial

p(L) =1+ oL + ¢*L1° + ...

e Difference operator (we will come back to this next week!)

Ayt =yt —yr-1 = (1 - L)Yt
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Example: Daily Stock Returns WARWICK

Taking log of S&P 500, we find that SP data is non-stationary. It has an
upward trend, suggesting that the mean (level) of the index is time variant

Daily log S&P 500
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Ex m I : D iI k R rn THE UNIVERSITY OF
ample: Daily Stock Returns WARWICK
We can construct stock returns, i.e. taking the first difference in logs.

R: = log(S:) — log(S:-1)

Daily Compounded Returns on S&P 500
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Example: Daily Stock Returns WA}Q/\LICK

Histograms suggest that returns can be approximated by a normal
distribution, with fat tails

Histogram of S&P 500 Returns
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Autocorrelation Function WARWICK

¢ Financial time series typically exhibit serial correlation. Knowing
today’s stock price helps to forecast tomorrow'’s stock price

® Autocovariance function

v = cov(yt, ye—j) = E[(ye — ) (ye—j — 1]

® Autocorrelation function:

~
=
70

® We can trace the autocorrelation function of a series as 7;, and plot

for j=0,1,2,...
® The autocorrelation plot gives us a sense of how backward looking a

series is, i.e. how much of today’s value is dependent on past
information?
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Autocorrelation Function: mtu't'onwA}(\/\lch

Consider a regression of y; on y;_;

Ye = Qjyi—j + €t

* Assuming E[y;] = 0 and var(y;) = o2

COV(}/tv)/t—j)
var(yz)
Autocorrelation coefficients are regression coefficients

E[j] =

=7

® 7; measures the unconditional correlation between y; and y;_;

Lecture 1: Fundamentals of Time Series 24 / 39



Autocorrelation Function: testing v o

significance WARWICK

Testing whether single autocorrelation coefficient is zero
Under Ho, 7; = 0: v/ T#; — N(0,1)
A 95% confidence interval for 7 is given by + —

1.96
VT

Test whether the first h autocorrelation coefficients are jointly zero:
Ljung/Box test statistic

~

7-k

T(T+2)
* T—k

2
— Xh

h
k=1
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Partial Autocorrelation Function WARWICK

® Now consider the regressions

Y = Q1,1Yt—1 + €

Yt = @P12Yt—1+ P22yt—2 + €

¢1,1 measures the unconditional correlation between y; and y;—1

¢22 measures the correlation between y; and y;_> net of the
correlation between y; and y;_1

o = ¢ is the partial autocorrelation coefficient
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Partial Autocorrelation Function  cuvvvesiror

WARWICK

® The partial autocorrelation coefficient o; measures the correlation of
yt and y;_; net of the autocorrelations 1 to j-1

e Consider the recursive system
Ve = Q1,1Yt—1 + €
Vi = Q12Yt—1+ $22Y—2 + €
Y= Q1jyt—1+ P2jyt-—2+ ... + @jiyr—j+ €t

® «aj = ¢;j is the measure of the marginal correlation of y; and y;_; net
of the correlation between y; and y;_1,¥:—2, ...yr—j+1
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ACF and PACF Function of White

Noi

—process

SITY OF

ICK

Yt = €t € N(O, 1)
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Definition: Autoregressive Process ' vuiviwin o

WA K\/\LICK
® An Autoregressive process of order 1, or AR(1)
Yt = p+ Qyr-1 + €, €t ~ WN(OaUS)
i
Elv.] —
[v¢] 1— o1
¢ Question: What happens when ¢ > 17
® An Autoregressive process of order p, or AR(p)
Yo =+ G1ye-1+ daye2 + ..+ bpyr_p + €, et ~ WN(0,0?)

o 12
E[yt]_1—¢1—¢2—---—¢p

Lecture 1: Fundamentals of Time Series 29 / 39



Conditions for Stationarity: AR

WARWICK

e For an AR(1) process,

Ve =oyi—1+e — |9l <1

® For an AR(p) process, the p roots of the following polynomial must
lie outside the unit circle

(1= ¢l — . — dplP)ye = ¢
(1= AL)oa(1 = ApL)y: = €

= |\i| < 1Vi
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Simulation of AR(1) process WAU\N@{\/\EI'E%

We plot simulated series for ¢ = 0.5 and ¢ = 0.95. Note that ¢ = 0.95 is
much more persistent, whereas ¢ = 0.5 is closer to a white noise process

AR(1) model,phi=0.5 AR(1) model,phi=0.95
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ACF and PACF Function of AR(1) WARWICK

Ve = 0.5_)/t—1 + € € ~ N(O, 1)
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ACF and PACF Function of AR(1) WARWICK

yt = 0.95y; 1 + € er ~ N(0,1)
Higher persistence of ¢ = 0.95 is seen through more gradual decay of ACF.
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Moving Average Process WARWICK

* A Moving Average process of order 1, or MA(1)

Ye = p+ €, +016 1, er ~ WN(0,07?)
* MA(q) process

Ye=p+ €+ 0161+ 0cer 2+ ... + 0464
® The moving average process is covariance stationary if and only if

q

ZHJ?<OO

Jj=0
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ACF and PACF Function of MA(I)WU?{SE%

Y = O.5€t_1 + € €t ~ N(O, 1)
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Heuristics with Autocorrelation a"%%’(jﬂ%iz
—Autocorrelation Functions

We can deduce the length of an AR and MA process by examining the
ACF and PACF of a time series.

® An autoregressive process has

@ A geometrically decaying ACF

® A number of significant coefficients of PACF = AR order
® A moving average process has

® A number of significant coefficients of ACF= MA order
® A geometrically decaying PACF
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ACF and PACF for an AR(3) WARWICK

Yt =0.5y:1+03y: 2+ 0.1y:-3+ € er ~ N(0,1)

Partial Autocorrelation
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ACF and PACF for an MA(3) WARWICK

Yt = 0-9€t—1 + O.?Et_z + 0-5€t—3 + € € ~ N(O, 1)
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Recap and LOOking Forward THE UNIVERSITY OF

WARWICK

¢ We have covered the following fundamentals of time series

@ AR, MA processes

® Using ACF and PACF to deduct time series properties

© We also covered an important property of time series, stationarity.
® Please follow pre-recorded material in week 2:

@ ARMA and the Box-Jenkins approach.

® Maximum Likelihood Estimation (MLE).
® ARMA is a combination of AR and MA processes.

® Box Jenkins is a procedure used to identify, estimate and check an
AR/MA process.

e MLE is an alternative method to OLS-and is particularly useful to
estimate parameters of a MA(q) process.

* Next week: Vector error correction models (VECM) use a method of
cointegration: which takes a linear combination of two series to
generate a stationary series.
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